Lösung 4.2:3c

Aus Online Mathematik Brückenkurs 1

Version vom 08:45, 21. Aug. 2009 von Tek (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Wir können \displaystyle 2\pi vom Winkel addieren oder subtrahieren, ohne dass sich der Wert des Sinus ändert, weil \displaystyle 2\pi einer ganzen Umdrehung entspricht.

Insbesondere können wir \displaystyle 2\pi so oft von \displaystyle 9\pi subtrahieren, bis wir einen Winkel zwischen \displaystyle 0 und \displaystyle 2\pi\, erhalten.

\displaystyle \sin 9\pi = \sin (9\pi - 2\pi - 2\pi - 2\pi - 2\pi) = \sin \pi\,\textrm{.}

Die Gerade mit dem Winkel \displaystyle \pi zur positiven x-Achse ist die negative x-Achse. Die Schnittstelle dieser Gerade mit dem Einheitskreis ist der Punkt (-1,0), also ist die y-Koordinate von diesen Punkt \displaystyle \sin 9\pi = \sin \pi = 0\,.

[Image]