2.1 Algebraische Ausdrücke
Aus Online Mathematik Brückenkurs 1
Theorie | Übungen |
Inhalt:
- Das Distributivgesetz
- Binomische Formeln
- Differenz von zwei Quadraten
- Rationale Ausdrücke
Lernziele:
Nach diesem Abschnitt sollest Du folgendes können:
- Algebraische Ausdrücke vereinfachen.
- Algebraische Ausdrücke mit Hilfe der binomischen Formeln faktorisieren.
- Algebraische Ausdrücke mit Hilfe der binomischen Formeln erweitern.
Das Distributivgesetz
Das Distributivgesetz ist die Regel für die Multiplikation von Klammern mit einem Faktor.
Beispiel 1
- \displaystyle 4(x+y) = 4x + 4y
- \displaystyle 2(a-b) = 2a -2b
- \displaystyle x \left(\frac{1}{x} + \frac{1}{x^2} \right) = x\cdot \frac{1}{x} + x \cdot \frac{1}{x^2} = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} = 1 + \frac{1}{x}
- \displaystyle a(x+y+z) = ax + ay + az
Das Distributivgesetz erklärt auch, wie ein Minuszeichen vor einer Klammer interpretiert werden soll, nämlich, dass ein Minuszeichen vor einer Klammer dasselbe ist, wie wenn man alle Zeichen in dem Ausdruck wechselt.
Beispiel 2
- \displaystyle -(x+y) = (-1) \cdot (x+y) = (-1)x + (-1)y = -x-y
- \displaystyle -(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x
= -x^2 +x
Wo wir uns im letzten Schritt von \displaystyle -(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.} verwendet haben - \displaystyle -(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x
+ (-1) \cdot y -(-1)\cdot y^3
\displaystyle \phantom{-(x+y-y^3)}{} = -x-y+y^3 - \displaystyle x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2
\displaystyle \phantom{x^2-2x-(3x+2)}{} = x^2 -5x -2
Das Distributivgesetz kann auch in umgekehrter Reihenfolge angewendet werden. Dies nennt man "Ausklammern". Oft möchte man den größten gemeinsamen Nenner ausklammern.
Beispiel 3
- \displaystyle 3x +9y = 3x + 3\cdot 3y = 3(x+3y)
- \displaystyle xy + y^2 = xy + y\cdot y = y(x+y)
- \displaystyle 2x^2 -4x = 2x\cdot x - 2\cdot 2\cdot x = 2x(x-2)
- \displaystyle \frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1
Die binomischen Formeln
Das Distributivgesetz kann angewendet werden, um andere Rechenregeln herzuleiten. Wenn wir folgenden Ausdruck beachten
\displaystyle (a+b)(c+d) |
und \displaystyle (a+b) als einen Faktor betrachten, der mit der Klammer \displaystyle (c+d) multipliziert wird, bekommen wir
\displaystyle \eqalign{
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d) &= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c + \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,d\mbox{,}\cr (a+b)\,(c+d) &= (a+b)\,c + (a+b)\,d\mbox{.}} |
Danach verwenden wir wieder das Distributivgesetz zweimal, und multiplizieren \displaystyle c und \displaystyle d mit ihren jeweiligen Klammern.
\displaystyle (a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.} |
Um sich an die Formel zu erinnern, kann man wie folgt denken:
Beispiel 4
- \displaystyle (x+1)(x-2) = x\cdot x + x \cdot (-2) + 1 \cdot x + 1 \cdot (-2)
= x^2 -2x+x-2
\displaystyle \phantom{(x+1)(x-2)}{}=x^2 -x-2 - \displaystyle 3(x-y)(2x+1) = 3(x\cdot 2x + x\cdot 1 - y \cdot 2x - y \cdot 1)
= 3(2x^2 +x-2xy-y)
\displaystyle \phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y - \displaystyle (1-x)(2-x) = 1\cdot 2 + 1 \cdot (-x) -x\cdot 2 - x\cdot (-x)
= 2-x-2x+x^2
\displaystyle \phantom{(1-x)(2-x)}{}=2-3x+x^2 wobei wir folgende Rechnung benutzt haben \displaystyle -x\cdot (-x) = (-1)x \cdot (-1)x = (-1)^2 x^2 = 1\cdot x^2 = x^2.
Es gibt zwei wichtige Sonderfälle von dieser Regel, nämlich wenn \displaystyle a+b und \displaystyle c+d gleich sind.
Binomische Formeln
\displaystyle (a+b)^2 = a^2 +2ab + b^2 |
\displaystyle (a-b)^2 = a^2 -2ab + b^2 |
Diese Regeln werden die erste und zweite binomische Formel genannt.
Beispiel 5
- \displaystyle (x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4
- \displaystyle (-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9
- wobei \displaystyle (-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \cdot x^2 = x^2\,\mbox{.}
- \displaystyle (x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2 = x^4 -8x^2 +16
- \displaystyle (x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)
\displaystyle \phantom{(x+1)^2-(x-1)^2}{}= x^2 +2x +1 -x^2 + 2x-1
\displaystyle \phantom{(x+1)^2-(x-1)^2}{} = 2x+2x = 4x - \displaystyle (2x+4)(x+2) = 2(x+2)(x+2) = 2(x+2)^2 = 2(x^2 + 4x+ 4)
\displaystyle \phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8 - \displaystyle (x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)
\displaystyle \phantom{(x-2)^3}{}=x \cdot x^2 + x\cdot (-4x) + x\cdot 4 - 2\cdot x^2 - 2 \cdot (-4x)-2 \cdot 4
\displaystyle \phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 = x^3-6x^2 + 12x -8
Die binomischen Formeln können auch rückwärts verwendet werden, um einen Ausdruck in seine Faktoren zu zerlegen.
Beispiel 6
- \displaystyle x^2 + 2x+ 1 = (x+1)^2
- \displaystyle x^6-4x^3 +4 = (x^3)^2 - 2\cdot 2x^3 +2^2 = (x^3-2)^2
- \displaystyle x^2 +x + \frac{1}{4} = x^2 + 2\cdot\frac{1}{2}x + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2
Differenz von zwei Quadraten
Es gibt auch eine dritte binomische Formel, und diese lautet:
Die Differenz von zwei Quadraten:
\displaystyle (a+b)(a-b) = a^2 -b^2 |
Diese Formel kann hergeleitet werden, indem man das Distributivgesetz zweimal verwendet.
\displaystyle (a+b)(a-b)
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b) = a^2 -ab+ab-b^2 = a^2 -b^2\mbox{.} |
Beispiel 7
- \displaystyle (x-4y)(x+4y) = x^2 -(4y)^2 = x^2 -16y^2
- \displaystyle (x^2+2x)(x^2-2x)= (x^2)^2 - (2x)^2 = x^4 -4x^2
- \displaystyle (y+3)(3-y)= (3+y)(3-y) = 3^2 -y^2 = 9-y^2
- \displaystyle x^4 -16 = (x^2)^2 -4^2 = (x^2+4)(x^2-4)
= (x^2+4)(x^2-2^2)
\displaystyle \phantom{x^4-16}{}=(x^2+4)(x+2)(x-2)
Rationale Ausdrücke
Rechnungen mit rationalen Ausdrücken sind sehr ähnlich den Rechnungen mit Brüchen
Alle Rechenregeln, die für Brüche gelten, gelten auch für rationale Ausdrücke,
\displaystyle \frac{a}{b} \cdot \frac{c}{d}
= \frac{a\cdot c}{b\cdot d} \quad \mbox{und} \quad \frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}} = \frac{a\cdot d}{b\cdot c} \; \mbox{.} |
Beispiel 8
- \displaystyle \frac{3x}{x-y} \cdot \frac{4x}{2x+y} = \frac{3x\cdot 4x}{(x-y)\cdot(2x+y)} = \frac{12x^2}{(x-y)(2x+y)}
- \displaystyle \frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} = \frac{a^2}{x(x+1)}
- \displaystyle \frac{\displaystyle \frac{x}{(x+1)^2}}{\displaystyle \frac{x-2}{x-1}} = \frac{x(x-1)}{(x-2)(x+1)^2}
Man kann den Zähler und Nenner eines rationalen Ausdruckes mit jeweils demselben Ausdruck multiplizieren. Dies nennt man wie bei Brüchen Erweitern.
\displaystyle \frac{x+2}{x+1}
= \frac{(x+2)(x+3)}{(x+1)(x+3)} = \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)} = \dots |
Das umgekehrte geht auch, nämlich dass man den Zähler und Nenner eines rationalen Ausdruckes jeweils durch denselben Ausdruck dividiert. Dies nennt man so wie bei Brüchen kürzen.
\displaystyle \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
= \frac{(x+2)(x+4)}{(x+1)(x+4)} = \frac{x+2}{x+1} \mbox{.} |
Beispiel 9
- \displaystyle \frac{x}{x+1} = \frac{x}{x+1} \cdot \frac{x+2}{x+2} = \frac{x(x+2)}{(x+1)(x+2)}
- \displaystyle \frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}
- \displaystyle \frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} = \left\{\,\text{Binomische Formel}\,\right\} = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} = \frac{x-y}{x+2}
Wenn man Brüche addiert oder subtrahiert, muss man die Brüche zuerst erweitern, sodass sie einen gemeinsamen Nenner haben,
\displaystyle \frac{1}{x} - \frac{1}{x-1}
= \frac{1}{x} \cdot \frac{x-1}{x-1} - \frac{1}{x-1} \cdot \frac{x}{x} = \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)} = \frac{x-1-x}{x(x-1)} = \frac{-1}{x(x-1)} \; \mbox{.} |
Um die Ausdrücke so klein wie möglich zu behalten, sollte man immer den kleinsten gemeinsamen Nenner der Brüche finden.
Beispiel 10
- \displaystyle \frac{1}{x+1} + \frac{1}{x+2}\quad hat den kleinsten gemeinsamen Nenner \displaystyle
(x+1)(x+2)
Wir erweitern den ersten Bruch mit \displaystyle (x+2) und den zweiten Bruch mit \displaystyle (x+1)\displaystyle \begin{align*} \frac{1}{x+1} + \frac{1}{x+2} &= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt] &= \frac{x+2+x+1}{(x+1)(x+2)} = \frac{2x+3}{(x+1)(x+2)}\:\mbox{.} \end{align*}
- \displaystyle \frac{1}{x} + \frac{1}{x^2}\quad hat den kleinsten gemeinsamen Nenner \displaystyle
x^2
Wir müssen nur den ersten Bruch erweitern, um den kleinsten gemeinsamen Nenner zu bekommen.\displaystyle \frac{1}{x} + \frac{1}{x^2} = \frac{x}{x^2} + \frac{1}{x^2} = \frac{x+1}{x^2}\,\mbox{.}
- \displaystyle \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad hat den kleinsten gemeinsamen Nenner \displaystyle x^2(x+1)^2(x+2)
Wie erweitern den ersten Bruch mit \displaystyle x(x+2) und den zweiten Bruch mit \displaystyle (x+1)^2\displaystyle \begin{align*} \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)} &= \frac{x(x+2)}{x^2(x+1)^2(x+2)} - \frac{(x+1)^2}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{x^2+2x}{x^2(x+1)^2(x+2)} - \frac{x^2+2x+1}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{x^2+2x-(x^2+2x+1)}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{x^2+2x-x^2-2x-1}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.} \end{align*}
- \displaystyle \frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad hat den kleinsten gemeinsamen Nenner \displaystyle x(x-1)(x+1)
Wir müssen alle Brüche erweitern, sodass sie einen gemeinsamen Nenner haben\displaystyle x(x-1)(x+1)\displaystyle \begin{align*} \frac{x}{x+1} - \frac{1}{x(x-1)} -1 &= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} - \frac{x(x-1)(x+1)}{x(x-1)(x+1)}\\[4pt] &= \frac{x^3-x^2}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} - \frac{x^3 -x}{x(x-1)(x+1)}\\[4pt] &= \frac{x^3-x^2 -(x+1) -(x^3-x)}{x(x-1)(x+1)}\\[4pt] &= \frac{x^3-x^2 -x-1 -x^3+x}{x(x-1)(x+1)}\\[4pt] &= \frac{-x^2-1}{x(x-1)(x+1)}\,\mbox{.} \end{align*}
Um große Ausdrücke zu vereinfachen, kürzt man häufig die Brüche. Um Brüche zu kürzen, müssen die Brüche in ihre Faktoren zerlegt sein, sodass man die Faktoren erkennt. Deshalb sollten die Ausdrücke immer faktorisiert bleiben, bevor man mit den Rechnungen fertig ist.
Beispiel 11
- \displaystyle \frac{1}{x-2} - \frac{4}{x^2-4}
= \frac{1}{x-2} - \frac{4}{(x+2)(x-2)}
= \left\{\,\mbox{Kleinste gemeinsamer Nenner}
= (x+2)(x-2)\,\right\}
\displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2}{(x+2)(x-2)} - \frac{4}{(x+2)(x-2)}
\displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2 -4}{(x+2)(x-2)} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2} - \displaystyle \frac{x + \displaystyle \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2}{x} + \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2+1}{x}}{x^2+1} = \frac{x^2+1}{x(x^2+1)} = \frac{1}{x}
- \displaystyle \frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}
= \frac{\displaystyle \frac{y^2}{x^2y^2} - \frac{x^2}{x^2y^2}}{x+y}
= \frac{\displaystyle \frac{y^2-x^2}{x^2y^2}}{x+y}
= \frac{y^2-x^2}{x^2y^2(x+y)}
\displaystyle \phantom{\smash{\frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}}}{} = \frac{(y+x)(y-x)}{x^2y^2(x+y)} = \frac{y-x}{x^2y^2}
Tipps fürs Lernen
Diagnostische Prüfung und Schlussprüfung
Nachdem Du mit der Theorie fertig bist, solltest Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die Links zu den Prüfungen in Deiner "Student Lounge".
Bedenke folgendes:
Vorsicht! Ein Rechenfehler kann die ganze Rechnung zerstören.
Rechne lieber in mehreren Schritten als in einem Schritt, falls Du Dich unsicher fühlst.
Das Erweitern von Ausdrücken ist oft unnötig, da Du den Ausdruck später vielleicht kürzen musst.
Reviews
Mehr über Algebra in der Wikipedia
Understanding Algebra - ein englischer Text im Web