Lösung 4.4:8c
Aus Online Mathematik Brückenkurs 1
Wir versuchen, die Gleichung durch trigonometrische Identitäten umzuschreiben, sodass sie nur eine trigonometrische Funktion enthält. Durch den trigonometrischen Pythagoras erhalten wir
\displaystyle \frac{1}{\cos ^{2}x} = \frac{\cos^2\!x + \sin^2\!x}{\cos^2\!x} = 1 + \frac{\sin^2\!x}{\cos^2\!x} = 1+\tan^2\!x |
Wir können die Gleichung in nur \displaystyle \tan x-Terme schreiben:
\displaystyle 1 + \tan^2\!x = 1 - \tan x\,\textrm{.} |
Benennen wir \displaystyle t=\tan x, erhalten wir eine quadratische Gleichung für t, die vereinfacht \displaystyle t^2+t=0 ist. Diese Gleichung hat die Lösungen \displaystyle t=0 und \displaystyle t=-1. Daher muss x entweder die Gleichung \displaystyle \tan x=0 oder die Gleichung \displaystyle \tan x=-1\, erfüllen. Die erste Gleichung hat die Lösungen \displaystyle x=n\pi und die zweite die Lösungen \displaystyle x=3\pi/4+n\pi\,.
Also erhalten wir zusammen die Lösungen
\displaystyle \left\{\begin{align}
x &= n\pi\,,\\[5pt] x &= \frac{3\pi}{4}+n\pi\,, \end{align}\right. |