Lösung 3.1:3b

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

Wir zerlegen alle Zahlen im Ausdruck in ihre Primfaktoren, um den Ausdruck zu vereinfachen.

Durch mehrfache Division mit 2 und 3, erhalten wir

\displaystyle \begin{align}

96 &= 2\cdot 48 = 2\cdot 2\cdot 24 = 2\cdot 2\cdot 2\cdot 12 = 2\cdot 2\cdot 2\cdot 2\cdot 6\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 3 = 2^{5}\cdot 3,\\[5pt] 18 &= 2\cdot 9 = 2\cdot 3\cdot 3 = 2\cdot 3^{2}. \end{align}

und also,

\displaystyle \begin{align}

\sqrt{96} &= \sqrt{2^{5}\cdot 3} = \sqrt{2^{2}\cdot 2^{2}\cdot 2\cdot 3} = 2\cdot 2\cdot \sqrt{2}\cdot \sqrt{3}\,,\\[5pt] \sqrt{18} &= \sqrt{2\cdot 3^{2}} = 3\cdot\sqrt{2}\,, \end{align}

Der Bruch kann also wie

\displaystyle \frac{\sqrt{96}}{\sqrt{18}} = \frac{2\cdot 2\cdot \sqrt{2}\cdot \sqrt{3}}{3\cdot \sqrt{2}} = \frac{4\sqrt{3}}{3}\,\textrm{.}

Hinweis: Wir können auch mit Potenzen rechnen

\displaystyle \begin{align}

\frac{\sqrt{96}}{\sqrt{18}} &= \frac{96^{1/2}}{18^{1/2}} = \frac{(2^{5}\cdot 3)^{1/2}}{(2\cdot 3^{2})^{1/2}} = \frac{2^{5\cdot\frac{1}{2}}\cdot 3^{\frac{1}{2}}}{2^{\frac{1}{2}}\cdot 3^{2\cdot \frac{1}{2}}}\\[5pt] &= 2^{\frac{5}{2}-\frac{1}{2}}\cdot 3^{\frac{1}{2}-1} = 2^{2}\cdot 3^{-\frac{1}{2}} = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3}\,\textrm{.} \end{align}