Lösung 4.4:6c
Aus Online Mathematik Brückenkurs 1
If we use the trigonometric relation \displaystyle \text{sin }\left( -x \right)=-\text{sin }x, the equation can be rewritten as
\displaystyle \sin 2x=\sin \left( -x \right)
In exercise 4.4:5a, we saw that an equality of the type
\displaystyle \sin u=\sin v\quad
is satisfied if
\displaystyle u=v+2n\pi
or
\displaystyle u=\pi -v+2n\pi
where
\displaystyle n\text{ }
is an arbitrary integer. The consequence of this is that the solutions to the equation satisfy
\displaystyle 2x=-x+2n\pi
or
\displaystyle 2x=\pi -\left( -x \right)+2n\pi
i.e.
\displaystyle 3x=2n\pi
or
\displaystyle x=\pi +2n\pi
The solutions to the equation are thus
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{2n\pi }{3} \\
x=\pi +2n\pi \\
\end{array} \right.
(
\displaystyle n\text{ }
an arbitrary integer)