Lösung 4.4:5c

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

For a fixed value of \displaystyle u, an equality of the form


\displaystyle \cos u=\cos v


is satisfied by two angles \displaystyle v in the unit circle:


\displaystyle v=u and \displaystyle v=-u


This means that all angles \displaystyle v which satisfy the equality are


\displaystyle v=u+2n\pi and \displaystyle v=-u+2n\pi


where \displaystyle n\text{ } is an arbitrary integer.

Therefore, the equation


\displaystyle \cos 5x=\cos \left( x+{\pi }/{5}\; \right)


has the solutions


\displaystyle 5x=x+\frac{\pi }{5}+2n\pi or

\displaystyle 5x=-x-\frac{\pi }{5}+2n\pi

If we collect \displaystyle x\text{ } onto one side, we end up with


\displaystyle \left\{ \begin{array}{*{35}l} x=\frac{\pi }{20}+\frac{1}{2}n\pi \\ x=-\frac{\pi }{30}+\frac{1}{3}n\pi \\ \end{array} \right. ( \displaystyle n\text{ } an arbitrary integer).