Lösung 4.3:8a
Aus Online Mathematik Brückenkurs 1
We rewrite
\displaystyle \text{tan }v
on the left-hand side as
\displaystyle \frac{\sin v}{\cos v}, so that
\displaystyle \tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}
If we then use the Pythagorean identity
\displaystyle \cos ^{2}v+\sin ^{2}v=1
and rewrite
\displaystyle \text{cos}^{\text{2}}v
in the denominator as
\displaystyle \text{1}-\text{sin}^{\text{2}}v\text{ }, we get what we are looking for on the right-hand side. The whole calculation is
\displaystyle \tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}=\frac{\sin ^{2}v}{1-\sin ^{2}v}