Lösung 4.2:3f

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

The point on the unit circle which corresponds to the angle \displaystyle -{\pi }/{6}\; lies in the fourth quadrant.

Image:4_2_3_f1.gif

As usual, \displaystyle \cos \left( -{\pi }/{6}\; \right) gives the \displaystyle x -coordinate of the point of intersection between the angle's line and the unit circle. In order to determine this point, we introduce an auxiliary triangle in the fourth quadrant.

Image:4_2_3_f2.gif

We can determine the edges in this triangle by simple trigonometry and then translate these over to the point's coordinates.

Image:4_2_3_f3.gif

The coordinates of the point of intersection are \displaystyle \left( \frac{\sqrt{3}}{2} \right.,\left. -\frac{1}{2} \right) and in particular \displaystyle \cos \left( -{\pi }/{6}\; \right)=\frac{\sqrt{3}}{2}.