Lösung 4.2:3d
Aus Online Mathematik Brückenkurs 1
In order to get an angle between \displaystyle 0 and \displaystyle \text{2}\pi , we subtract \displaystyle \text{2}\pi from \displaystyle {7\pi }/{2}\; , which also leaves the cosine value unchanged
\displaystyle \cos \frac{7\pi }{2}=\cos \left( \frac{7\pi }{2}-2\pi \right)=\cos \frac{3\pi }{2}
When we draw a line which makes an angle
\displaystyle {3\pi }/{2}\;
with the positive
\displaystyle x
-axis, we get the negative
\displaystyle y
-axis and we see that this line cuts the unit circle at the point
\displaystyle \left( 0 \right.,\left. -1 \right). The
\displaystyle x
-coordinate of the intersection point is thus
\displaystyle 0
and hence
\displaystyle \cos {7\pi }/{2}\;=\cos {3\pi }/{2}\;=0