Lösung 3.4:1b
Aus Online Mathematik Brückenkurs 1
In the equation, both sides are positive because the factors \displaystyle e^{x} and \displaystyle 3^{-x} are positive regardless of the value of \displaystyle x (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both numbers,
\displaystyle \ln \left( 13e^{x} \right)=\ln \left( 2\centerdot 3^{-x} \right)
Using the log law, we can divide up the products into several logarithmic terms,
\displaystyle \ln 13+\ln e^{x}=\ln 2+\ln 3^{-x}
and using the law
\displaystyle \ln a^{b}=b\centerdot \ln a, we can get rid of
\displaystyle x
from the exponents:
\displaystyle \ln 13+x\ln e=\ln 2+\left( -x \right)\ln 3
Collecting together
\displaystyle x
on one side and the other terms on the other,
\displaystyle x\ln e+x\ln 3=\ln 2-\ln 13
Take out
\displaystyle x
on the left-hand side and use
\displaystyle \ln e=1
\displaystyle x\left( 1+\ln 3 \right)=\ln 2-\ln 13
Then, solve for
\displaystyle x
\displaystyle x=\frac{\ln 2-\ln 13}{1+\ln 3}
NOTE: Because
\displaystyle \ln 2<\ln 13, we can write the answer as
\displaystyle x=-\frac{\ln 13-\ln 2}{1+\ln 3}
in order to indicate that
\displaystyle x
is negative.