Lösung 3.1:7a
Aus Online Mathematik Brückenkurs 1
First, we multiply the tops and bottoms of the two terms by the conjugate of their respective denominators, so that there are no root signs left in the denominators,
\displaystyle \begin{align}
& \frac{1}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\centerdot \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}=\frac{\sqrt{6}+\sqrt{5}}{\left( \sqrt{6} \right)^{2}-\left( \sqrt{5} \right)^{2}}=\frac{\sqrt{6}+\sqrt{5}}{6-5}=\sqrt{6}+\sqrt{5}, \\
& \frac{1}{\sqrt{7}-\sqrt{6}}=\frac{1}{\sqrt{7}-\sqrt{6}}\centerdot \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}=\frac{\sqrt{7}+\sqrt{6}}{\left( \sqrt{7} \right)^{2}-\left( \sqrt{6} \right)^{2}}=\frac{\sqrt{7}+\sqrt{6}}{7-6}=\sqrt{7}+\sqrt{6}, \\
& \\
\end{align}
Now, we can subtract the terms and simplify the result,
\displaystyle \begin{align}
& \frac{1}{\sqrt{6}-\sqrt{5}}-\frac{1}{\sqrt{7}-\sqrt{6}}=\sqrt{6}+\sqrt{5}-\left( \sqrt{7}+\sqrt{6} \right) \\
& =\sqrt{6}+\sqrt{5}-\sqrt{7}-\sqrt{6}=\sqrt{5}-\sqrt{7}. \\
\end{align}