Lösung 2.3:2d
Aus Online Mathematik Brückenkurs 1
The equation can be written in normalized form (i.e. the coefficient in front of \displaystyle x^{\text{2}} is \displaystyle 1 ) by dividing both sides by \displaystyle 4,
\displaystyle x^{2}-7x+\frac{13}{4}=0
Completing the square on the left-hand side,
\displaystyle \begin{align}
& x^{2}-7x+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{13}{4} \\
& =\left( x-\frac{7}{2} \right)^{2}-\frac{36}{4}=\left( x-\frac{7}{2} \right)^{2}-9 \\
\end{align}
The equation can therefore be written as
\displaystyle \left( x-\frac{7}{2} \right)^{2}-9=0
and taking the square root gives the solutions as
\displaystyle x-\frac{7}{2}=\sqrt{9}=3
i.e.
\displaystyle x=\frac{7}{2}+3=\frac{13}{2},
\displaystyle x-\frac{7}{2}=-\sqrt{9}=-3
i.e.
\displaystyle x=\frac{7}{2}-3=\frac{1}{2}.
As an extra check, we substitute x=1/2 and x=13/2 into the equation:
\displaystyle x=\text{1}/\text{2}: LHS
\displaystyle =4\centerdot \left( \frac{1}{2} \right)^{2}-28\centerdot \frac{1}{2}+13=4\centerdot \frac{1}{4}-14+13=1-14+13=
RHS
\displaystyle x=\text{13}/\text{2}: LHS \displaystyle =4\centerdot \left( \frac{13}{2} \right)^{2}-28\centerdot \frac{13}{2}+13=4\centerdot \frac{169}{4}-14\centerdot 13+13=169-182+13= RHS