Lösung 2.3:2c
Aus Online Mathematik Brückenkurs 1
We start by completing the square of the left-hand side:
\displaystyle \begin{align}
& y^{2}+3y+4=\left( y+\frac{3}{2} \right)^{2}-\left( \frac{3}{2} \right)^{2}+4 \\
& =\left( y+\frac{3}{2} \right)^{2}-\frac{9}{4}+\frac{16}{4}=\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4} \\
\end{align}
The equation is then
\displaystyle \left( y+\frac{3}{2} \right)^{2}+\frac{7}{4}=0
The first term \displaystyle \left( y+\frac{3}{2} \right)^{2} is always greater than or equal to zero because it is a square and \displaystyle \frac{7}{4} is a positive number. This means that the left hand side cannot be zero, regardless of how \displaystyle y is chosen. The equation has no solution.