Lösung 2.2:2b
Aus Online Mathematik Brückenkurs 1
First, we multiply both sides in the equation by \displaystyle 4\centerdot 7=28, so that we get rid of the denominators in the equation,
\displaystyle \begin{align}
& 4\centerdot 7\centerdot \frac{8x+3}{7}-4\centerdot 7\centerdot \frac{5x-7}{4}=4\centerdot 7\centerdot 2 \\
& \Leftrightarrow 4\centerdot \left( 8x+3 \right)-7\centerdot \left( 5x-7 \right)=56 \\
\end{align}
We can simplify the left-hand side to ,
\displaystyle 4\centerdot \left( 8x+3 \right)-7\centerdot \left( 5x-7 \right)=32x+12-35x+49=-3x+61
Hence, the equation is
\displaystyle -3x+61=56
We solve this equation by subtracting
\displaystyle 61
from both sides and then dividing by
\displaystyle -3,
\displaystyle \begin{align}
& -3x+61-61=56-61 \\
& -3x=-5 \\
& \frac{-3x}{-3}=\frac{-5}{-3} \\
& x=\frac{5}{3} \\
\end{align}
The answer is
\displaystyle x={5}/{3}\;.
As the final part of the solution, check the answer by substituting \displaystyle x={5}/{3}\; into the original equation
\displaystyle \begin{align}
& \text{LHS}\quad =\quad \frac{8\centerdot \frac{5}{3}+3}{7}-\frac{5\centerdot \frac{5}{3}-7}{4}=\frac{\left( 8\centerdot \frac{5}{3}+3 \right)\centerdot 3}{7\centerdot 3}-\frac{\left( 5\centerdot \frac{5}{3}-7 \right)\centerdot 3}{4\centerdot 3} \\
& \\
& =\frac{8\centerdot 5+3\centerdot 3}{7\centerdot 3}-\frac{5\centerdot 5-7\centerdot 3}{4\centerdot 3}=\frac{40+9}{21}-\frac{25-21}{12} \\
& \\
& =\frac{49}{21}-\frac{4}{12}=\frac{7\centerdot 7}{3\centerdot 7}-\frac{2\centerdot 2}{2\centerdot 2\centerdot 2}=\frac{7}{3}-\frac{1}{3}=\frac{7-1}{3} \\
& \\
& =\frac{6}{3}=2\quad =\quad \text{RHS} \\
\end{align}