Lösung 2.1:4a
Aus Online Mathematik Brückenkurs 1
First, we multiply the second bracket by \displaystyle x from the first bracket,
\displaystyle \left( x+2 \right)\left( 3x^{2}-x+5 \right)=x\centerdot 3x^{2}-x\centerdot x+x\centerdot 5+...
Then, do the same for
\displaystyle 2
from the first bracket:
\displaystyle \left( x+2 \right)\left( 3x^{2}-x+5 \right)=3x^{3}-x^{2}+5x+2\centerdot 3x^{2}-2\centerdot x+2\centerdot 5
Now, collect together
\displaystyle x^{3}-,
\displaystyle x^{2}-,
\displaystyle x- and the constant terms:
\displaystyle 3x^{3}+\left( -1+6 \right)x^{2}+\left( 5-2 \right)x+10=3x^{3}+5x^{2}+3x+10
The coefficient in front of
\displaystyle x^{2}
is
\displaystyle 5
and the coefficient in front of x is
\displaystyle 3.