Lösung 1.2:2c
Aus Online Mathematik Brückenkurs 1
We divide up the two numerators into the smallest possible integer factors,
\displaystyle \begin{align}
& 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\
& 14=2\centerdot 7 \\
\end{align}
The expression can thus be written as
\displaystyle \frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}
Here, we see that the denominators have a factor \displaystyle 2 in common. We multiply the top and bottom of the first fraction by \displaystyle 7 and the second by \displaystyle 2\centerdot 3 i.e. we leave out the common factor \displaystyle 2, so that the fractions have the lowest common denominator \displaystyle 2\centerdot 2\centerdot 3\centerdot 7,
\displaystyle \frac{1}{12}-\frac{1}{14}=\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}=\frac{1}{2\centerdot 2\centerdot 3}\centerdot \frac{7}{7}-\frac{1}{2\centerdot 7}\centerdot \frac{2\centerdot 3}{2\centerdot 3}
The lowest common denominator is \displaystyle 84.