Lösung 4.4:5b
Aus Online Mathematik Brückenkurs 1
Wir betrachten zuerst die Gleichung
\displaystyle \tan u=\tan v |
Diese Gleichung ist erfüllt, wenn
\displaystyle v=u\qquad\text{und}\qquad v=u+\pi\,\textrm{.} |
Die allgemeine Lösung ist
\displaystyle v=u+n\pi\,, |
Für unsere Gleichung
\displaystyle \tan x=\tan 4x |
erhalten wir die Lösungen
\displaystyle 4x = x+n\pi\,. |
Lösen wir diese Gleichung für x, erhalten wir
\displaystyle x = \tfrac{1}{3}n\pi |