Lösung 4.3:9

Aus Online Mathematik Brückenkurs 1

Version vom 10:45, 25. Aug. 2009 von Tek (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Wir verwenden die Doppelwinkelfunktion für \displaystyle \sin 160^{\circ}

\displaystyle \sin 160^{\circ} = 2\cos 80^{\circ}\sin 80^{\circ}\,\textrm{.}

Wir verwenden jetzt die Doppelwinkelfunktion für den Faktor \displaystyle \sin 80^{\circ}, nachdem wir den Faktor \displaystyle \cos 80^{\circ} behalten möchten:

\displaystyle 2\cos 80^{\circ}\sin 80^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\sin 40^{\circ}\,.

Wir verwenden noch einmal die Doppelwinkelfunktion, dieses Mal für den Faktor \displaystyle \sin 40^{\circ}

\displaystyle 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot\sin 40^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot 2\cos 20^{\circ}\sin 20^{\circ}\,\textrm{·}

Also haben wir gezeigt, dass

\displaystyle \sin 160^{\circ} = 8\cos 80^{\circ}\cdot \cos 40^{\circ}\cdot \cos 20^{\circ}\cdot\sin 20^{\circ}

Anders geschrieben:

\displaystyle \cos 80^{\circ}\cdot\cos 40^{\circ}\cdot \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}}\,\textrm{.}

[Image]

Zeichnen wir den Winkel \displaystyle 160^{\circ} im Einheitskreis, sehen wir, dass der Winkel dieselbe y-Koordinate wie der Winkel \displaystyle 20^{\circ} hat und daher denselben Sinus. Also erhalten wir

\displaystyle \sin 20^{\circ} = \sin 160^{\circ}\,\textrm{.}

Damit haben wir die Gleichung

\displaystyle \cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}} = \frac{1}{8}\,\textrm{.}