Lösung 4.3:3c

Aus Online Mathematik Brückenkurs 1

Version vom 09:24, 19. Jun. 2009 von Markus.bez (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Durch den trigonometrischen Pythagoras können wir \displaystyle \cos v durch \displaystyle \sin v ausdrücken,

\displaystyle \cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \cos v = \pm\sqrt{1-\sin^2 v}\,\textrm{.}

Wir wissen auch, dass \displaystyle v zwischen \displaystyle -\pi/2 und \displaystyle \pi/2 liegt, also im ersten oder vierten Quadrant, wo die x-Koordinate positiv ist. Also haben wir

\displaystyle \cos v = \sqrt{1-\sin^2 v} = \sqrt{1-a^2}\,\textrm{.}