Lösung 4.4:8a

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

Wir verwenden die Doppelwinkelfunktion \displaystyle \sin 2x = 2\sin x\cos x, und erhalten so

\displaystyle 2\sin x\cos x-\sqrt{2}\cos x=0\,\textrm{.}

Wir ziehen den gemeinsamen Faktor \displaystyle \cos x heraus,

\displaystyle \cos x\,(2\sin x-\sqrt{2}) = 0

und erhalten zwei Fälle wobei die Gleichung erfüllt ist. Entweder ist \displaystyle \cos x = 0 oder \displaystyle 2\sin x-\sqrt{2} = 0\,.


\displaystyle \cos x = 0:

Hat die allgemeine Lösung

\displaystyle x = \frac{\pi}{2}+n\pi\qquad


\displaystyle 2\sin x-\sqrt{2}=0:

Ist dasselbe wie \displaystyle \sin x = 1/\!\sqrt{2}, mit der allgemeinen Lösung

\displaystyle \left\{\begin{align}

x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] x &= \frac{3\pi}{4}+2n\pi\,, \end{align}\right.


Also hat die ganze Gleichung die Lösungen

\displaystyle \left\{\begin{align}

x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] x &= \frac{\pi}{2}+n\pi\,,\\[5pt] x &= \frac{3\pi}{4}+2n\pi\,, \end{align}\right.