Lösung 2.1:4b
Aus Online Mathematik Brückenkurs 1
Wenn wir den Ausdruck
\displaystyle (1+x+x^{2}+x^{3})(2-x+x^{2}+x^{4}) |
erweitern, wird jemer Term n der ersten Klammer mit jedem Term in der zweiten Klammer multipliziert, also
\displaystyle \begin{align}
&(1+x+x^{2}+x^{3})(2-x+x^{2}+x^{4})\\[3pt] &\qquad\quad{}=1\cdot 2+1\cdot (-x)+1\cdot x^{2}+1\cdot x^{4}+x\cdot 2+x\cdot (-x) \\ &\qquad\qquad\quad{}+x\cdot x^{2}+x\cdot x^{4}+x^{2}\cdot 2+x^{2}\cdot (-x)+x^{2}\cdot x^{2}+x^{2}\cdot x^{4} \\ &\qquad\qquad\quad{}+x^{3}\cdot 2+x^{3}\cdot (-x)+x^{3}\cdot x^{2}+x^{3}\cdot x^{4}\,\textrm{.} \end{align} |
Falls wir wie in diesem Fall nur den x-Koeffizienten wissen wollen, genügt es wenn wir die Terme multiplixieren, die einen x-Term ergeben. In diesem Fall entspricht das 1 mal -x und x mal 2,
\displaystyle (1+x+x^{2}+x^{3})(2-x+x^{2}+x^{4}) = \cdots + 1\cdot (-x) + x\cdot 2 + \cdots |
und also ist der Koeffizient von x \displaystyle -1+2=1\,.
Den Koeffizienten von den \displaystyle x^2-Term finden wir indem wir alle Terme multiplizieren die einen \displaystyle x^2-Term ergeben, also
\displaystyle (1+x+x^{2}+x^{3})(2-x+x^{2}+x^{4}) = \cdots + 1\cdot x^{2} + x\cdot(-x) + x^{2}\cdot 2 + \cdots |
Der Koeffizient von \displaystyle x^2 ist also \displaystyle 1-1+2=2\,.