Lösung 4.2:9

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

If we introduce the dashed triangle below, the distance as the crow flies between A and B is equal to the triangle's hypotenuse, c.

One way to determine the hypotenuse is to know the triangle's opposite and adjacent sides, since the Pythagorean theorem then gives

Vorlage:Displayed math

In turn, we can determine the opposite and adjacent by introducing another triangle APR, where R is the point on the line PQ which the dashed triangle's side of length a cuts the line.

Because we know that \displaystyle \text{AP}=4 and the angle at P, simple trigonometry shows that x and y are given by

Vorlage:Displayed math

We can now start to look for the solution. Since x and y have been calculated, we can determine a and b by considering the horizontal and vertical distances in the figure.

Image:4_2_9_3-1.gif   Image:4_2_9_3-2.gif
\displaystyle \begin{align}a &= x+5\\ &= 2+5 = 7\end{align} \displaystyle \begin{align}b &= 12-y\\ &= 12-2\sqrt{3}\end{align}

With a and b given, the Pythagorean theorem leads to

Vorlage:Displayed math