Processing Math: 54%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

4.3 Übungen

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche
 

Vorlage:Not selected tab Vorlage:Selected tab

 

Exercise 4.3:1

Determine the angles v between 2 and 2 which satisfy

a) cosv=cos5 b) sinv=sin7 c) tanv=tan72

Exercise 4.3:2

Determine the angles v between 0 and which satisfy

a) cosv=cos23 b) cosv=cos57

Exercise 4.3:3

Suppose that 2v2 and that sinv=a. With the help of a express

a) sin(v) b) sin(v)
c) cosv d) sin2v 
e) cos2+v  f) sin3+v 

Exercise 4.3:4

Suppose that 0v and that cosv=b. With the help of b express

a) sin2v b) sinv
c) sin2v d) cos2v
e) sinv+4  f) cosv3 

Exercise 4.3:5

Determine cosv and tanv, where v is an acute angle in a triangle such that sinv=75.

Exercise 4.3:6

a) Determine \displaystyle \ \sin{v}\ and \displaystyle \ \tan{v}\ if \displaystyle \ \cos{v}=\displaystyle \frac{3}{4}\ and \displaystyle \ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,.
b) Determine \displaystyle \ \cos{v}\ and \displaystyle \ \tan{v}\ if \displaystyle \ \sin{v}=\displaystyle \frac{3}{10}\ and \displaystyle \,v\, lies in the second quadrant.
c) Determine \displaystyle \ \sin{v}\ and \displaystyle \ \cos{v}\ if \displaystyle \ \tan{v}=3\ and \displaystyle \ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,.

Exercise 4.3:7

Determine \displaystyle \ \sin{(x+y)}\ if

a) \displaystyle \sin{x}=\displaystyle \frac{2}{3}\,,\displaystyle \ \sin{y}=\displaystyle \frac{1}{3}\ and \displaystyle \,x\,, \displaystyle \,y\, are angles in the first quadrant.
b) \displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ and \displaystyle \,x\,, \displaystyle \,y\, are angles in the first quadrant.

Exercise 4.3:8

Show the following trigonometric relations

a) \displaystyle \tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}
b) \displaystyle \displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}
c) \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}
d) \displaystyle \displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v

Exercise 4.3:9

Show Feynman's equality
\displaystyle \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}
(Hint: use the formula for double angles on \displaystyle \,\sin 160^\circ\,.)