Lösung 4.4:6b
Aus Online Mathematik Brückenkurs 1
After moving the terms over to the left-hand side, so that
\displaystyle \sqrt{2}\sin x\cos x-\cos x=0
we see that we can take out a common factor
\displaystyle \text{cos }x,
\displaystyle \cos x\left( \sqrt{2}\sin x-1 \right)=0
and that the equation is only satisfied if at least one of the factors,
\displaystyle \text{cos }x
or
\displaystyle \sqrt{2}\text{sin }x-\text{1}
is zero. Thus, there are two cases:
\displaystyle \text{cos }x=0: This basic equation has solutions
\displaystyle x={\pi }/{2}\;
and
\displaystyle x=3{\pi }/{2}\;
in the unit circle, and from this we see that the general solution is
\displaystyle x=\frac{\pi }{2}+2n\pi
and
\displaystyle x=\frac{3\pi }{2}+2n\pi
where
\displaystyle n\text{ }
is an arbitrary integer. Because the angles
\displaystyle {\pi }/{2}\;
and
\displaystyle 3{\pi }/{2}\;
differ by
\displaystyle \pi , the solutions can be summarized as
\displaystyle x=\frac{\pi }{2}+n\pi
(
\displaystyle n
an arbitrary integer).
√ \displaystyle \sqrt{2}\text{sin }x-\text{1}=0
- if we rearrange the equation, we obtain the basic equation as
\displaystyle \text{sin }x\text{ }={1}/{\sqrt{2}}\;, which has the solutions \displaystyle x={\pi }/{4}\; and \displaystyle x=3{\pi }/{4}\; in the unit circle and hence the general solution
\displaystyle x=\frac{\pi }{4}+2n\pi
and
\displaystyle x=\frac{3\pi }{4}+2n\pi
where
\displaystyle n\text{ }
can arbitrary integer.
All in all, the original equation has the solutions
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{\pi }{4}+2n\pi \\
x=\frac{\pi }{2}+n\pi \\
x=\frac{3\pi }{4}+2n\pi \\
\end{array} \right.
(
\displaystyle n\text{ }
an arbitrary integer).