Lösung 4.4:2a
Aus Online Mathematik Brückenkurs 1
We draw a unit circle and mark on those angles on the circle which have a \displaystyle y -coordinate of \displaystyle {\sqrt{3}}/{2}\;, in order to see which solutions lie between \displaystyle 0 and \displaystyle 2\pi .
In the first quadrant, we recognize \displaystyle x={\pi }/{3}\; as the angle which has a sine value of \displaystyle {\sqrt{3}}/{2}\; and then we have the reflectionally symmetric solution \displaystyle x=\pi -\frac{\pi }{3}=\frac{2\pi }{3} in the second quadrant.
Each of those solutions returns to itself after every revolution, so that we obtain the complete solution if we add multiples of \displaystyle 2\pi
\displaystyle x=\frac{\pi }{3}+2n\pi and \displaystyle x=\frac{2\pi }{3}+2n\pi
where
\displaystyle n
is an arbitrary integer.
NOTE: when we write that the complete solution is given by
\displaystyle x=\frac{\pi }{3}+2n\pi
and
\displaystyle x=\frac{2\pi }{3}+2n\pi ,
this means that for every integer \displaystyle n, we obtain a solution to the equation:
\displaystyle \begin{array}{*{35}l}
n=0 & x=\frac{\pi }{3} & x=\frac{2\pi }{3} \\
n=-1 & x=\frac{\pi }{3}+\left( -1 \right)\centerdot 2\pi & x=\frac{2\pi }{3}+\left( -1 \right)\centerdot 2\pi \\
n=1 & x=\frac{\pi }{3}+1\centerdot 2\pi & x=\frac{2\pi }{3}+1\centerdot 2\pi \\
n=-2 & x=\frac{\pi }{3}+\left( -2 \right)\centerdot 2\pi & x=\frac{2\pi }{3}+\left( -2 \right)\centerdot 2\pi \\
n=2 & x=\frac{\pi }{3}+2\centerdot 2\pi & x=\frac{2\pi }{3}+2\centerdot 2\pi \\
\end{array}
and so on.