Lösung 4.3:6a
Aus Online Mathematik Brückenkurs 1
If we think of the angle v as an angle in the unit circle, then \displaystyle v lies in the fourth quadrant and has \displaystyle x -coordinate \displaystyle \frac{3}{4}.
If we enlarge the fourth quadrant, we see that we can make a right-angled triangle with hypotenuse equal to \displaystyle \text{1} and an opposite side equal to \displaystyle \frac{3}{4}.
Using Pythagoras' theorem, it is possible to determine the remaining side from
\displaystyle b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2}
which gives that
\displaystyle \begin{align}
& b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2} \\
& b=\sqrt{1-\left( \frac{3}{4} \right)^{2}}=\sqrt{1-\frac{9}{16}}=\sqrt{\frac{7}{16}}=\frac{\sqrt{7}}{4} \\
\end{align}
Because the angle
\displaystyle v
belongs to the fourth quadrant, its
\displaystyle y
-coordinate is negative and is therefore equal to
\displaystyle -b, i.e.
\displaystyle \sin v=-\frac{\sqrt{7}}{4}
Thus, we have directly that
\displaystyle \tan v=\frac{\sin v}{\cos v}=\frac{-\frac{\sqrt{7}}{4}}{\frac{3}{4}}=-\frac{\sqrt{7}}{3}