Lösung 4.3:3d
Aus Online Mathematik Brückenkurs 1
The expression for the angle \displaystyle {\pi }/{2}\;-v differs from \displaystyle {\pi }/{2}\; by as much as \displaystyle -v\text{ } differs from \displaystyle 0. This means that \displaystyle {\pi }/{2}\; makes the same angle with the positive \displaystyle y -axis as \displaystyle -v\text{ } makes with the positive \displaystyle x -axis.
Angle \displaystyle v angle \displaystyle \pi -v
Therefore, the angle
\displaystyle {\pi }/{2}\;-v
has a
\displaystyle y
-coordinate which is equal to the
\displaystyle x
-coordinate for the angle
\displaystyle v, i.e.
\displaystyle \sin \left( {\pi }/{2}\;-v \right)=\cos v
and from exercise c, we know that
\displaystyle \cos v=\sqrt{1-a^{2}}
\displaystyle \sin \left( \frac{\pi }{2}-v \right)=\sqrt{1-a^{2}}