Lösung 4.3:3c
Aus Online Mathematik Brückenkurs 1
With the help of the Pythagorean identity, we can express \displaystyle \cos v in terms of \displaystyle \text{sin }v,
\displaystyle \cos ^{2}v+\sin ^{2}v=1
In addition, we know that the angle
\displaystyle v
lies between
\displaystyle -{\pi }/{2}\;
and
\displaystyle {\pi }/{2}\;, i.e. either in the first or fourth quadrant, where angles always have a positive
\displaystyle x
-coordinate (cosine value); thus, we can conclude that
\displaystyle \cos v=\sqrt{1-\text{sin}^{2}\text{ }v}=\sqrt{1-a^{2}}