Lösung 2.3:6c
Aus Online Mathematik Brückenkurs 1
If we complete the square of the expression, we have that
\displaystyle \begin{align}
& x^{2}-5x+7=\left( x-\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}+7 \\
& =\left( x-\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{28}{4}=\left( x-\frac{5}{2} \right)^{2}+\frac{3}{4} \\
\end{align}
and because
\displaystyle \left( x-\frac{5}{2} \right)^{2}
is a quadratic, this term is at least equal to zero when
\displaystyle x={5}/{2}\;. This shows that the polynomial's smallest value is
\displaystyle \frac{3}{4}.