Lösung 2.3:5b
Aus Online Mathematik Brückenkurs 1
Instead of randomly trying different values of \displaystyle x , it is better investigate the second-degree expression by completing the square:
\displaystyle \begin{align}
& 4x^{2}-28x+48=4\left( x^{2}-7x+12 \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \right) \\
& =4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \right)=4\left( x-\frac{7}{2} \right)^{2}-1. \\
\end{align}
In the expression in which the square has been completed, we see that if, e.g.
\displaystyle x={7}/{2}\;, then the whole expression is negative and equal to
\displaystyle -\text{1}.
NOTE: All values of \displaystyle x between \displaystyle \text{3} and \displaystyle \text{4} give a negative value for the expression.