Lösung 2.3:2b
Aus Online Mathematik Brückenkurs 1
The first step when we solve the second-degree equation is to complete the square on the left-hand side:
\displaystyle y^{2}+2y-15=\left( y+1 \right)^{2}-1^{2}-15=\left( y+1 \right)^{2}-16.
The equation can now be written as
\displaystyle \left( y+1 \right)^{2}=16
and has, after taking the square root, the solutions
\displaystyle y+1=\sqrt{16}=4
which gives
\displaystyle y=-1+4=3
\displaystyle y+1=-\sqrt{16}=-4
which gives
\displaystyle y=-1-4=-5
A quick check shows that
\displaystyle y=-\text{5 }
and
\displaystyle y=\text{3 }
satisfy the equation:
\displaystyle y=-\text{5 }: LHS=
\displaystyle \left( -5 \right)^{2}+2\centerdot \left( -5 \right)-15=25-10-15=0
= RHS
\displaystyle y=\text{3 }: LHS= \displaystyle 3^{2}+2\centerdot 3-15=9+6-15=0 = RHS