Lösung 2.3:1d

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

We apply the standard formula for completing the square,


\displaystyle x^{2}+ax=\left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}

on our expression and this gives


\displaystyle x^{2}+5x=\left( x+\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}

The whole expression becomes


\displaystyle \begin{align} & x^{2}+5x+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{12}{4} \\ & =\left( x+\frac{5}{2} \right)^{2}+\frac{12-25}{4}=\left( x+\frac{5}{2} \right)^{2}-\frac{13}{4} \\ \end{align}


A quick check shows that we have calculated correctly.


\displaystyle \begin{align} & \left( x+\frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+2\centerdot \frac{5}{2}\centerdot x+\left( \frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+5x+\frac{25}{4}-\frac{13}{4} \\ & =x^{2}+5x+\frac{12}{4}=x^{2}+5x+3 \\ \end{align}