Lösung 2.1:4b
Aus Online Mathematik Brückenkurs 1
When the expression \displaystyle \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right) is expanded out,
every term in the first bracket is multiplied by every term in the second bracket, i.e.
\displaystyle \begin{align}
& \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right) \\
& =1\centerdot 2+1\centerdot \left( -x \right)+1\centerdot x^{2}+1\centerdot x^{4}+x\centerdot 2+x\centerdot \left( -x \right) \\
& +x\centerdot x^{2}+x\centerdot x^{4}+x^{2}\centerdot 2+x^{2}\centerdot \left( -x \right)+x^{2}\centerdot x^{2}+x^{2}\centerdot x^{4} \\
& +x^{3}\centerdot 2+x^{3}\centerdot \left( -x \right)+x^{3}\centerdot x^{2}+x^{3}\centerdot x^{4} \\
\end{align}
If we only want to know the coefficient in front of
\displaystyle x, we do not need to carry out the complete expansion of the expression; it is sufficient to find those combinations of a term from the first bracket and a term from the second bracket which, when multiplied, give an
\displaystyle x^{1}
-term. In this case, we have two such pairs:
\displaystyle 1
multiplied by -
\displaystyle x
and
\displaystyle x
multiplied by
\displaystyle 2
,
\displaystyle \begin{align}
& \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right)=...+1\centerdot \left( -x \right)+x\centerdot 2+... \\
& \\
\end{align}
so that the coefficient in front of
\displaystyle x
is
\displaystyle -1+2=1
We obtain the coefficient in front of
\displaystyle x^{2}
by finding those combinations of a term from each bracket
which give an
\displaystyle x^{2}
-term; these are
\displaystyle \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right)=...+1\centerdot x^{2}+x\centerdot \left( -x \right)+x^{2}\centerdot 2+...
The coefficient in front of
\displaystyle x^{2}
is
\displaystyle 1-1+2
.