Lösung 1.3:4c
Aus Online Mathematik Brückenkurs 1
The whole expression consists of factors having a base of \displaystyle 5;
so the power rules can be use to simplify the expression first:
\displaystyle \begin{align}
& \frac{5^{12}}{5^{-4}}\centerdot \left( 5^{2} \right)^{-6}=\frac{5^{12}}{5^{-4}}\centerdot 5^{2\centerdot \left( -6 \right)}=\frac{5^{12}}{5^{-4}}\centerdot 5^{-12}=\frac{5^{12}\centerdot 5^{-12}}{5^{-4}} \\
& \\
& =\frac{5^{12-12}}{5^{-4}}=\frac{5^{0}}{5^{-4}}=5^{0-\left( -4 \right)}=5^{4}=5\centerdot 5\centerdot 5\centerdot 5=625 \\
\end{align}