4.4 Übungen
Aus Online Mathematik Brückenkurs 1
Exercise 4.4:1
For which angles \displaystyle \,v\,, where \displaystyle \,0 \leq v\leq 2\pi\,, does
a) | \displaystyle \sin{v}=\displaystyle \frac{1}{2} | b) | \displaystyle \cos{v}=\displaystyle \frac{1}{2} |
c) | \displaystyle \sin{v}=1 | d) | \displaystyle \tan{v}=1 |
e) | \displaystyle \cos{v}=2 | f) | \displaystyle \sin{v}=-\displaystyle \frac{1}{2} |
g) | \displaystyle \tan{v}=-\displaystyle \frac{1}{\sqrt{3}} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Solution g
Exercise 4.4:2
Solve the equation
a) | \displaystyle \sin{x}=\displaystyle \frac{\sqrt{3}}{2} | b) | \displaystyle \cos{x}=\displaystyle \frac{1}{2} | c) | \displaystyle \sin{x}=0 |
d) | \displaystyle \sin{5x}=\displaystyle \frac{1}{\sqrt{2}} | e) | \displaystyle \sin{5x}=\displaystyle \frac{1}{2} | f) | \displaystyle \cos{3x}=-\displaystyle\frac{1}{\sqrt{2}} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Exercise 4.4:3
Solve the equation
a) | \displaystyle \cos{x}=\cos{\displaystyle \frac{\pi}{6}} | b) | \displaystyle \sin{x}=\sin{\displaystyle \frac{\pi}{5}} |
c) | \displaystyle \sin{(x+40^\circ)}=\sin{65^\circ} | d) | \displaystyle \sin{3x}=\sin{15^\circ} |
Answer
Solution a
Solution b
Solution c
Solution d
Exercise 4.4:4
Determine the angles \displaystyle \,v\, in the interval \displaystyle \,0^\circ \leq v \leq 360^\circ\, which satisfy \displaystyle \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,.
Answer
Solution
Exercise 4.4:5
Solve the equation
a) | \displaystyle \sin{3x}=\sin{x} | b) | \displaystyle \tan{x}=\tan{4x} |
c) | \displaystyle \cos{5x}=\cos(x+\pi/5) |
Exercise 4.4:6
Solve the equation
a) | \displaystyle \sin x\cdot \cos 3x = 2\sin x | b) | \displaystyle \sqrt{2}\sin{x}\cos{x}=\cos{x} |
c) | \displaystyle \sin 2x = -\sin x |
Exercise 4.4:7
Solve the equation
a) | \displaystyle 2\sin^2{x}+\sin{x}=1 | b) | \displaystyle 2\sin^2{x}-3\cos{x}=0 |
c) | \displaystyle \cos{3x}=\sin{4x} |
Exercise 4.4:8
Solve the equation
a) | \displaystyle \sin{2x}=\sqrt{2}\cos{x} | b) | \displaystyle \sin{x}=\sqrt{3}\cos{x} |
c) | \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x} |