ZusatzStoffTUB
Aus Online Mathematik Brückenkurs 1
Inhalt:
- erster Punkt
- zweiter Punkt
- dritter Punkt
Lernziele
Nach diesem Abschnitt sollten Sie folgendes können:
- erstes Ziel
- zweites Ziel
Kombinatorik
A - Permutationen
Permutationen sind die Möglichkeiten die eine Anordnung von Gegenständen zu Vertauschen, also die Anzahl der Weisen Objekte anzuordnen.
Beispiel 1
\displaystyle \star \diamond \bigcirc
\displaystyle \star \bigcirc \diamond
\displaystyle \diamond \bigcirc \star
\displaystyle \diamond \star \bigcirc
\displaystyle \bigcirc \star \diamond
\displaystyle \bigcirc \diamond \star
Es gibt \displaystyle 3 \cdot 2 \cdot 1 = 3! = 6 (3! = „3 Fakultät“) Möglichkeiten die Objekte
anzuordnen. Hierbei gilt, dass für den ersten Gegenstand drei verschiedene Möglichkeiten
vorhanden sind, an der zweiten Stelle nur noch zwei und an der dritten dann nur noch eine.
Allgemein: Für eine Gruppe von n Elementen gibt es \displaystyle n! := n (n-1) (n-2) … \cdot 3 \cdot 3 \cdot 2 \cdot 1 Möglichkeiten („n Fakultät“) die Objekte hintereinander anzuordnen (n! Permutationen). Zusätzliche Definition : \displaystyle 0! := 1 .
Beispiel 2
- Möglichkeiten der Anordnung von \displaystyle a, m, b, u ? \displaystyle 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24
- \displaystyle \dfrac{5!}{3!} = \dfrac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 5 \cdot 4
- \displaystyle \dfrac{(n+1)!}{(n-1)!} = \dfrac {(n+1) n (n-1) (n-2) \cdot ... \cdot 2 \cdot 1}{(n-1)(n-2) \cdot …. \cdot 2 \cdot 1} = (n+1) n
- \displaystyle 2n! = 2 \cdot n \cdot (n-1) \cdot … \cdot 2 \cdot 1 \displaystyle (2n)! = 2n \cdot (2n-1) \cdot (2n-2) \cdot ... \cdot n \cdot (n-1) \cdot ... \cdot 2 \cdot 1
Stichproben aus n- elementigen Mengen:
Beispiel 3
Wie viele Worte mit 4 Buchstaben kann ich mit den Buchstaben A, R, T, E, N und S bilden? (mit Doppelbenutzung) 1. Buchstabe 2. Buchstabe 3. Buchstabe 4. Buchstabe 6 Möglichkeiten 6 Möglichkeiten 6 Möglichkeiten 6 Möglichkeiten
Also gibt es \displaystyle 6 \cdot 6 \cdot 6 \cdot 6 = 6^4 Möglichkeiten.
Allgemein: Es gibt \displaystyle n^k Möglichkeiten der Anordnung, die beim k- maligen Auswählen aus n Objekten mit Wiederholung und mit Berücksichtigung der Reihenfolge entstehen können.
Beispiel 4
Wie vorher nur ohne Doppelbenutzung.
1.Ziehen : 6 Möglichkeiten 2.Ziehen : 5 Möglichkeiten 3.Ziehen : 4 Möglichkeiten 4.Ziehen : 3 Möglichkeiten insgesamt: \displaystyle 6 \cdot 5 \cdot 4 \cdot 3 Möglichkeiten. \displaystyle 6 \cdot 5 \cdot 4 \cdot 3 = \dfrac{6!}{2!} = \dfrac{6!}{(6-4)!}
Allgemein: Es gibt \displaystyle n \cdot (n-1) \cdot (n-2) \cdot ... \cdot (n-k+1) = \dfrac{n!}{(n-k)!} Möglichkeiten aus n Objekten k Stück unter Berücksichtigung der Reihenfolge und ohne Zurücklegen auszusuchen.
Beispiel 5
„Lotto“ mit Reihenfolge
Anzahl der Möglichkeiten: \displaystyle \dfrac{49!}{(49-6)!} = 49 \cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44 \approx 10 \cdot 10^9 (*)
Aber: Die Reihenfolge ist bei echtem Lotto unwichtig. Für sechs feste Zahlen sind 6! Kombinationen in (*) enthalten.
Beispiel 6
Also: „echtes“ Lotto \displaystyle \dfrac{49!}{(49-6)!} \cdot \dfrac{1}{6!} = \dfrac{49!}{(49-6)!6!} = \binom{49}{6} \approx 13 \cdot 10^6 Möglichkeiten.
Auswahlmöglichkeiten für k aus n Elementen ohne Zurücklegen und ohne Reihenfolge:
\displaystyle \binom{n}{k} = \dfrac{n!}{(n-k)!k!}
mit \displaystyle n /in N , k /in N , n /ge k
Zusammenfassung Urnenmodell: Das Urnenmodell ist ein allgemeines Beispiel für die Kombinatorik. Hier ist die Idee ein Behältnis mit n Kugeln zu haben aus dem man k mal zieht. Die Beispiele von oben lassen sich durch das Modell und die dazugehörigen Formeln alle rechnen.
x | Mit Zurücklegen | Ohne Zurücklegen |
---|---|---|
Reihenfolge wichtig | \displaystyle n^k
(Beispiel 1) | \displaystyle \dfrac{n!}{(n-k)!}
(Beispiel 2) |
Reihenfolge unwichtig | \displaystyle \binom{n+k-1}{k}
(wird selten gebraucht, hier ist es aber der Vollständigkeit halber aufgeführt) | \displaystyle \binom{n}{k} = \dfrac{n!}{(n-k)!k!}
(Beispiel 4) |
Beispiel 7
Wähle 3 Personen aus 10 aus. Wie viele Möglichkeiten gibt es?
Nach Urnenmodell: Ziehe 3 aus 10, ohne Zurück legen und ohne Reihenfolge.
Es gilt \displaystyle \binom{10}{3} = \dfrac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120 Möglichkeiten
Beispiel 8
Wie viele Möglichkeiten gibt es beim Skat spielen 32 Karten auf 3 Spieler (10 Karten) zu und Skat (2 Karten) zu verteilen?
Kombinationen f&ume;r den 1.Spieler \displaystyle \cdot Kombinationen f&ume;r den 2. Spieler \displaystyle \cdot Kombinationen f&ume;r den 3. Spieler \displaystyle \cdot Kombinationen f&ume;r den 4. Spieler \displaystyle = \binom{32}{10} \cdot \binom{22}{10} \cdot \binom{12}{10} \cdot \binom{2}{2} \displaystyle =\dfrac{32!}{22! \cdot 10!} \cdot \dfrac{22!}{12! \cdot 10!} \cdot \dfrac{12!}{2! \cdot 10!} \cdot \dfrac{2!}{2! \cdot 0!} \displaystyle =\dfrac{32!}{10! \cdot 10! \cdot 10! \cdot 2!}.
(Bemerkung: Es gibt auch noch andere Rechnungen, die auf das gleiche Ergebnis führen.)
Es gibt \displaystyle \dfrac{n!}{k_1! K_2! … k_i!} Möglichkeiten, n Objekte auf i Gruppen zu verteilen, wobei jede Gruppe \displaystyle k_j Elemente haben soll. (im Beispiel: n=32, j=4 Gruppen