Lösung 3.1:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Aktuelle Version (10:13, 9. Aug. 2009) (bearbeiten) (rückgängig)
 
Zeile 12: Zeile 12:
{{Abgesetzte Formel||<math>\frac{1}{(\sqrt{3}-2)^{2}-2} = \frac{1}{7-4\sqrt{3}-2} = \frac{1}{5-4\sqrt{3}}</math>}}
{{Abgesetzte Formel||<math>\frac{1}{(\sqrt{3}-2)^{2}-2} = \frac{1}{7-4\sqrt{3}-2} = \frac{1}{5-4\sqrt{3}}</math>}}
-
Jetzt erweitern wir den Bruch mit <math>5+4\sqrt{3}</math> und werden somit die Wurzel im Nenner los:
+
Jetzt erweitern wir den Bruch mit <math>5+4\sqrt{3}</math> und werden somit die Wurzel im Nenner los
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}

Aktuelle Version

Wir erweitern die Quadrate im Nenner

\displaystyle \begin{align}

(\sqrt{3}-2)^2 &= (\sqrt{3}\,)^{2} - 2\cdot\sqrt{3}\cdot 2 + 2^{2}\\[5pt] &= 3-4\sqrt{3}+4\\[5pt] &= 7-4\sqrt{3}\,\textrm{.} \end{align}

Daher haben wir

\displaystyle \frac{1}{(\sqrt{3}-2)^{2}-2} = \frac{1}{7-4\sqrt{3}-2} = \frac{1}{5-4\sqrt{3}}

Jetzt erweitern wir den Bruch mit \displaystyle 5+4\sqrt{3} und werden somit die Wurzel im Nenner los

\displaystyle \begin{align}

\frac{1}{5-4\sqrt{3}} &= \frac{1}{5-4\sqrt{3}}\cdot \frac{5+4\sqrt{3}}{5+4\sqrt{3}}\\[5pt] &= \frac{5+4\sqrt{3}}{5^{2}-(4\sqrt{3})^{2}}\\[5pt] &= \frac{5+4\sqrt{3}}{5^{2}-4^{2}(\sqrt{3})^{2}}\\[5pt] &= \frac{5+4\sqrt{3}}{25-16\cdot 3}\\[5pt] &= \frac{5+4\sqrt{3}}{-23}\\[5pt] &= -\frac{5+4\sqrt{3}}{23}\,\textrm{.} \end{align}