Lösung 4.2:5a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 6: Zeile 6:
{| width="100%"
{| width="100%"
-
|width="50%" align="center"|[[Image:4_2_5_a2.gif|center]]
+
|width="50%" align="center"|[[Image:4_2_5_a2_de.gif|center]]
|width="50%" align="left"|<math>\begin{align}\text{Gegenkathete} &= 1\cdot\sin 45^{\circ} = \dfrac{1}{\sqrt{2}}\\[5pt] \text{Ankathete} &= 1\cdot\cos 45^{\circ} = \frac{1}{\sqrt{2}}\end{align}</math>
|width="50%" align="left"|<math>\begin{align}\text{Gegenkathete} &= 1\cdot\sin 45^{\circ} = \dfrac{1}{\sqrt{2}}\\[5pt] \text{Ankathete} &= 1\cdot\cos 45^{\circ} = \frac{1}{\sqrt{2}}\end{align}</math>
|}
|}
Der Punkt hat also die Koordinaten <math>( -1/\!\sqrt{2}, 1/\!\sqrt{2})</math>. Daher ist <math>\cos 135^{\circ} = -1/\!\sqrt{2}\,</math>.
Der Punkt hat also die Koordinaten <math>( -1/\!\sqrt{2}, 1/\!\sqrt{2})</math>. Daher ist <math>\cos 135^{\circ} = -1/\!\sqrt{2}\,</math>.

Version vom 15:48, 30. Jul. 2009

Da der Winkel \displaystyle 135^{\circ} = 90^{\circ} + 45^{\circ}, \displaystyle 135^{\circ} im zweiten Quadranten liegt, bildet er den Winkel \displaystyle 45^{\circ} mit der positiven y-Achse

Wir betrachten das Dreieck im zweiten Quadrant wie im Bild, um die Koordinaten des Punktes am Einheitskreis, der den Winkel \displaystyle 135^{\circ} entspricht, zu bestimmen.

\displaystyle \begin{align}\text{Gegenkathete} &= 1\cdot\sin 45^{\circ} = \dfrac{1}{\sqrt{2}}\\[5pt] \text{Ankathete} &= 1\cdot\cos 45^{\circ} = \frac{1}{\sqrt{2}}\end{align}

Der Punkt hat also die Koordinaten \displaystyle ( -1/\!\sqrt{2}, 1/\!\sqrt{2}). Daher ist \displaystyle \cos 135^{\circ} = -1/\!\sqrt{2}\,.