Lösung 4.4:3c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | Falls wir <math>x + 40^{\circ}</math> als | + | Falls wir <math>x + 40^{\circ}</math> als unbekannte Variable betrachten, haben wir eine einfache trigonometrische Gleichung wie vorher. Wir sehen, dass es im Intervall <math>0^{\circ}\le x+40^{\circ}\le 360^{\circ}</math> zwei Lösungen gibt, nämlich <math>x+40^{\circ} = 65^{\circ}</math> und die symmetrische Lösung <math>x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,</math>. |
[[Image:4_4_3_c.gif|center]] | [[Image:4_4_3_c.gif|center]] | ||
- | + | Die allgemeine Lösung ist damit | |
{{Abgesetzte Formel||<math>x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}</math>}} | {{Abgesetzte Formel||<math>x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}</math>}} | ||
- | + | Also erhalten wir die Lösungen | |
{{Abgesetzte Formel||<math>x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}</math>}} | {{Abgesetzte Formel||<math>x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}</math>}} |
Version vom 14:26, 19. Jun. 2009
Falls wir \displaystyle x + 40^{\circ} als unbekannte Variable betrachten, haben wir eine einfache trigonometrische Gleichung wie vorher. Wir sehen, dass es im Intervall \displaystyle 0^{\circ}\le x+40^{\circ}\le 360^{\circ} zwei Lösungen gibt, nämlich \displaystyle x+40^{\circ} = 65^{\circ} und die symmetrische Lösung \displaystyle x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,.
Die allgemeine Lösung ist damit
\displaystyle x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ} |
Also erhalten wir die Lösungen
\displaystyle x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.} |