Lösung 4.2:3d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Wir subtrahieren <math>2\pi</math> vom Winkel math>{7\pi }/{2}\,</math>, so oft bis wir einen Winkel zwischen <math>0</math> und <math>2\pi</math> erhalten,
+
Wir subtrahieren <math>2\pi</math> vom Winkel <math>{7\pi }/{2}\,</math> so oft, bis wir einen Winkel zwischen <math>0</math> und <math>2\pi</math> erhalten:
{{Abgesetzte Formel||<math>\cos\frac{7\pi}{2} = \cos\Bigl(\frac{7\pi}{2}-2\pi\Bigr) = \cos\frac{3\pi}{2}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\cos\frac{7\pi}{2} = \cos\Bigl(\frac{7\pi}{2}-2\pi\Bigr) = \cos\frac{3\pi}{2}\,\textrm{.}</math>}}
-
Wir sehen dass die Gerade mit den Winkel <math>3\pi/2</math> zur ''x''-Achse den Einheitskreis im Punkt (0,-1) schneidet. Die ''x''-Koordinate des Schnittpunktes ist also
+
Wir sehen, dass die Gerade mit den Winkel <math>3\pi/2</math> zur ''x''-Achse den Einheitskreis im Punkt (0,-1) schneidet. Die ''x''-Koordinate des Schnittpunktes ist also
<math>0</math> und daher ist <math>\cos (7\pi/2) = \cos (3\pi/2) = 0\,</math>.
<math>0</math> und daher ist <math>\cos (7\pi/2) = \cos (3\pi/2) = 0\,</math>.
[[Image:4_2_3_d.gif|center]]
[[Image:4_2_3_d.gif|center]]

Version vom 10:30, 18. Jun. 2009

Wir subtrahieren \displaystyle 2\pi vom Winkel \displaystyle {7\pi }/{2}\, so oft, bis wir einen Winkel zwischen \displaystyle 0 und \displaystyle 2\pi erhalten:

\displaystyle \cos\frac{7\pi}{2} = \cos\Bigl(\frac{7\pi}{2}-2\pi\Bigr) = \cos\frac{3\pi}{2}\,\textrm{.}

Wir sehen, dass die Gerade mit den Winkel \displaystyle 3\pi/2 zur x-Achse den Einheitskreis im Punkt (0,-1) schneidet. Die x-Koordinate des Schnittpunktes ist also \displaystyle 0 und daher ist \displaystyle \cos (7\pi/2) = \cos (3\pi/2) = 0\,.