Lösung 2.3:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | |||
| Zeile 7: | Zeile 7: | ||
| {{Abgesetzte Formel||<math>x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.}</math>}} | {{Abgesetzte Formel||<math>x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.}</math>}} | ||
| - | + | Unser Ausdruck wird dadurch | |
| {{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Aktuelle Version
Wir verwenden die Formel für quadratische Ergänzung
| \displaystyle x^{2}+ax = \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{,} | 
Wir haben
| \displaystyle x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.} | 
Unser Ausdruck wird dadurch
| \displaystyle \begin{align} x^{2}+5x+3 &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}+3\\[5pt] &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{12}{4}\\[5pt] &= \Bigl(x+\frac{5}{2}\Bigr)^{2} + \frac{12-25}{4}\\[5pt] &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\,\textrm{.} \end{align} | 
Schließlich kontrollieren wir unsere Rechnungen
| \displaystyle \begin{align} \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4} &= x^{2} + 2\cdot\frac{5}{2}\cdot x + \Bigl(\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\\[5pt] &= x^{2} + 5x + \frac{25}{4} - \frac{13}{4}\\[5pt] &= x^{2} + 5x + \frac{12}{4}\\[5pt] &= x^{2}+5x+3\,\textrm{.} \end{align} | 
 
		  