1.2 Brüche

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Sprache und Formulierung)
Zeile 17: Zeile 17:
'''Lernziele:'''
'''Lernziele:'''
-
After this section, you should have learned to:
+
Nach diesem Abschnitt sollten Sie folgendes können:
* Ausdrücke bestehend aus Brüchen, den vier Grundrechnungsarten und Klammern berechnen.
* Ausdrücke bestehend aus Brüchen, den vier Grundrechnungsarten und Klammern berechnen.
* Brüche so weit wie möglich kürzen.
* Brüche so weit wie möglich kürzen.
Zeile 30: Zeile 30:
{{Abgesetzte Formel||<math>0{,}25 = \frac{25}{100} = \frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16}\quad\textrm{etc.}</math>}}
{{Abgesetzte Formel||<math>0{,}25 = \frac{25}{100} = \frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16}\quad\textrm{etc.}</math>}}
-
Ein Bruch ändert also nicht seinen Wert, indem man den Zähler und den Nenner jeweils durch die gleiche Zahl multipliziert oder dividiert. Diesen Vorgang nennt man erweitern und kürzen.
+
Ein Bruch ändert also nicht seinen Wert, indem man den Zähler und den Nenner jeweils mit der gleichen Zahl multipliziert oder durch die gleiche Zahl teilt. Diesen Vorgang nennt man erweitern bzw. kürzen.
<div class="exempel">
<div class="exempel">
Zeile 70: Zeile 70:
</div>
</div>
-
Das wichtigste hier ist einen gemeinsamen Nenner zu finden. Ideal ist aber den kleinsten gemeinsamen Nenner zu finden. Einen gemeinsamen Nenner findet man einfach, indem man alle Brüche mit den Nennern der anderen Brüche erweitert. Dies ist aber nicht immer notwendig.
+
Das wichtigste hier ist, einen gemeinsamen Nenner zu finden. Ideal ist aber, den kleinsten gemeinsamen Nenner zu finden. Einen gemeinsamen Nenner findet man einfach, indem man alle Brüche mit den Nennern der anderen Brüche erweitert. Dies ist aber nicht immer notwendig.
Zeile 104: Zeile 104:
</div>
</div>
-
Man sollte die Bruchrechnung so gut beherrschen, dass man direkt den kleinsten gemeinsamen Nenner von nicht all zu großen Brüchen findet. Eine allgemeine Methode um den kleinsten gemeinsamen Nenner zu finden, besteht darin dass man die Nenner in ihre Primfaktoren zerlegt.
+
Man sollte die Bruchrechnung so gut beherrschen, dass man direkt den kleinsten gemeinsamen Nenner von nicht all zu großen Brüchen findet. Eine allgemeine Methode um den kleinsten gemeinsamen Nenner zu finden, besteht darin, dass man die Nenner in ihre Primfaktoren zerlegt.
<div class="exempel">
<div class="exempel">
Zeile 119: Zeile 119:
<li> Vereinfache <math>\ \frac{2}{15}+\frac{1}{6}-\frac{5}{18}</math>.<br/><br/>
<li> Vereinfache <math>\ \frac{2}{15}+\frac{1}{6}-\frac{5}{18}</math>.<br/><br/>
-
Wir multiplizieren alle Primfaktoren des Nenners die nicht in allen Nennern vorkommen, und erhalten dadurch den kleinsten gemeinsamen Nenner.
+
Wir multiplizieren alle Primfaktoren des Nenners, die nicht in allen Nennern vorkommen, und erhalten dadurch den kleinsten gemeinsamen Nenner.
{{Abgesetzte Formel||<math>\left. \eqalign{15 &= 3\cdot 5\cr 6&=2\cdot 3\cr 18 &= 2\cdot 3\cdot 3} \right\} \quad\Rightarrow\quad \text{LCD} = 2\cdot 3\cdot 3\cdot5 = 90\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\left. \eqalign{15 &= 3\cdot 5\cr 6&=2\cdot 3\cr 18 &= 2\cdot 3\cdot 3} \right\} \quad\Rightarrow\quad \text{LCD} = 2\cdot 3\cdot 3\cdot5 = 90\,\mbox{.}</math>}}
Also haben wir
Also haben wir
Zeile 130: Zeile 130:
== Multiplikation ==
== Multiplikation ==
-
Wenn man einen Bruch mit einer ganzen Zahl multipliziert, wird nur der Zähler mit dieser Zahl multipliziert, während der Nenner unverändert bleibt. Es ist offensichtlich dass zum Beispiel <math>\tfrac{1}{3}</math> multipliziert mit 2 <math>\tfrac{2}{3}</math> ergibt, also:
+
Wenn man einen Bruch mit einer ganzen Zahl multipliziert, wird nur der Zähler mit dieser Zahl multipliziert, während der Nenner unverändert bleibt. Es ist offensichtlich, dass zum Beispiel <math>\tfrac{1}{3}</math> multipliziert mit 2 <math>\tfrac{2}{3}</math> ergibt, also:
{{Abgesetzte Formel||<math>\frac{1}{3}\cdot 2 = \frac{1\cdot 2}{3} = \frac{2}{3}\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\frac{1}{3}\cdot 2 = \frac{1\cdot 2}{3} = \frac{2}{3}\,\mbox{.}</math>}}
Zeile 143: Zeile 143:
</div>
</div>
-
Bevor man Brüche multipliziert, sollte man kontrollieren ob man den Bruch kürzen kann. Dies kontrolliert man indem man die Brüche als einen gemeinsamen Bruch schreibt.
+
Bevor man Brüche multipliziert, sollte man kontrollieren, ob man den Bruch kürzen kann. Dies kontrolliert man, indem man die Brüche als einen gemeinsamen Bruch schreibt.
<div class="exempel">
<div class="exempel">
''' Beispiel 6'''
''' Beispiel 6'''
Zeile 177: Zeile 177:
== Division ==
== Division ==
-
Wenn man <math>\tfrac{1}{4}</math> durch 2 teilt bekommt man <math>\tfrac{1}{8}</math>. Wenn man <math>\tfrac{1}{2}</math> durch 5 teilt bekommt man <math>\tfrac{1}{10}</math>. Wir haben also:
+
Wenn man <math>\tfrac{1}{4}</math> durch 2 teilt, bekommt man <math>\tfrac{1}{8}</math>. Wenn man <math>\tfrac{1}{2}</math> durch 5 teilt, bekommt man <math>\tfrac{1}{10}</math>. Wir haben also:
{{Abgesetzte Formel||<math>\frac{\displaystyle \frac{1}{4}}{2} = \frac{1}{4\cdot 2} = \frac{1}{8} \qquad \mbox{ and } \qquad \frac{\displaystyle \frac{1}{2}}{5} = \frac{1}{2\cdot 5} = \frac{1}{10}\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\frac{\displaystyle \frac{1}{4}}{2} = \frac{1}{4\cdot 2} = \frac{1}{8} \qquad \mbox{ and } \qquad \frac{\displaystyle \frac{1}{2}}{5} = \frac{1}{2\cdot 5} = \frac{1}{10}\,\mbox{.}</math>}}
Zeile 219: Zeile 219:
{{Abgesetzte Formel||<math>\frac{2}{3}\cdot\frac{3}{2} = \frac{\not{2}}{\not{3}}\cdot\frac{\not{3}}{\not{2}} = 1 \qquad \mbox{ und } \qquad \frac{9}{17}\cdot\frac{17}{9} = \frac{\not{9}}{\not{17}}\cdot\frac{\not{17}}{\not{9}} = 1\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\frac{2}{3}\cdot\frac{3}{2} = \frac{\not{2}}{\not{3}}\cdot\frac{\not{3}}{\not{2}} = 1 \qquad \mbox{ und } \qquad \frac{9}{17}\cdot\frac{17}{9} = \frac{\not{9}}{\not{17}}\cdot\frac{\not{17}}{\not{9}} = 1\mbox{.}</math>}}
-
In einer Division von Brüchen, erweitert man den ganzen Bruch mit dem Kehrbruch des Nennerbruches. Im Nenner bekommen wir daher nur einen 1:er.
+
Bei einer Division von Brüchen erweitert man den ganzen Bruch mit dem Kehrbruch des Nennerbruches. Im Nenner bekommen wir daher nur einen 1:er.
<div class="exempel">
<div class="exempel">
Zeile 234: Zeile 234:
== Brüche als Teil eines Ganzen ==
== Brüche als Teil eines Ganzen ==
-
Rationale Zahlen können als Dezimalzahlen, oder auch als Brüche dargestellt werden. Im Alltag verwendet man oft die rationalen Zahlen um das Verhältnis von verschiedenen Mengen zu beschreiben. Eine Berechnung von einen Verhältnis kann entweder zu einer Multiplikation, oder zu einer Division führen.
+
Rationale Zahlen können als Dezimalzahlen oder auch als Brüche dargestellt werden. Im Alltag verwendet man oft die rationalen Zahlen, um das Verhältnis von verschiedenen Mengen zu beschreiben. Eine Berechnung von einen Verhältnis kann entweder zu einer Multiplikation oder zu einer Division führen.
<div class="exempel">
<div class="exempel">
Zeile 263: Zeile 263:
== Gemischte Ausdrücke ==
== Gemischte Ausdrücke ==
-
Wenn Brüche in größeren Ausdrücken vorkommen, ist es wichtig sich an die Operatorrangfolge zu erinnern. Wichtig ist auch dass es um Zähler und Nenner in einem Bruch "unsichtbare Klammern" gibt. Also muss man den Zähler und Nenner zuerst berechnen, bevor man den Bruch kürzt.
+
Wenn Brüche in größeren Ausdrücken vorkommen, ist es wichtig sich an die Operatorrangfolge zu erinnern. Wichtig ist auch, dass es um Zähler und Nenner in einem Bruch "unsichtbare Klammern" gibt. Also muss man den Zähler und Nenner zuerst berechnen, bevor man den Bruch kürzt.
<div class="exempel">
<div class="exempel">
Zeile 332: Zeile 332:
Versuche Deine Berechnungen so einfach wie möglich zu halten. Was am einfachsten ist, ist verschieden von Fall zu Fall.
Versuche Deine Berechnungen so einfach wie möglich zu halten. Was am einfachsten ist, ist verschieden von Fall zu Fall.
-
Es ist wichtig die Rechnungen mit Brüchen gut zu beherrschen. Du solltest Bruchrechnungen sowie Divisionen, Multiplikation und Brüche mit gemeinsamen Nennern schreiben, ohne Probleme ausführen können. Bruchrechnungen kommen häufig in rationalen Funktionen vor, aber auch in Grenzwerten und Differentialrechnungen, und sind daher sehr elementar in der Mathematik.
+
Es ist wichtig, die Rechnungen mit Brüchen gut zu beherrschen. Du solltest Bruchrechnungen sowie Divisionen, Multiplikation und Brüche mit gemeinsamen Nennern schreiben und ohne Probleme ausführen können. Bruchrechnungen kommen häufig in rationalen Funktionen vor, aber auch in Grenzwerten und Differentialrechnungen, und sind daher sehr elementar in der Mathematik.

Version vom 11:14, 8. Jun. 2009

       Theorie          Übungen      

Inhalt:

  • Addition und Subtraktion von Brüchen
  • Multiplikation und Division von Brüchen

Lernziele:

Nach diesem Abschnitt sollten Sie folgendes können:

  • Ausdrücke bestehend aus Brüchen, den vier Grundrechnungsarten und Klammern berechnen.
  • Brüche so weit wie möglich kürzen.
  • Den kleinsten gemeinsamen Nenner von Bruchzahlen bestimmen.


Brüche kürzen und erweitern

Eine rationale Zahl kann in mehreren äquivalenten Formen dargestellt werden, je nach der Wahl des Zählers und Nenners. Zum Beispiel:

\displaystyle 0{,}25 = \frac{25}{100} = \frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16}\quad\textrm{etc.}

Ein Bruch ändert also nicht seinen Wert, indem man den Zähler und den Nenner jeweils mit der gleichen Zahl multipliziert oder durch die gleiche Zahl teilt. Diesen Vorgang nennt man erweitern bzw. kürzen.

Beispiel 1 Multiplikation mit derselben Zahl:

  1. \displaystyle \frac{2}{3} = \frac{2\cdot 5}{3\cdot 5} = \frac{10}{15}
  2. \displaystyle \frac{5}{7} = \frac{5\cdot 4}{7\cdot 4} = \frac{20}{28}

Division durch dieselbe Zahl:

  1. \displaystyle \frac{9}{12} = \frac{9/3}{12/3} = \frac{3}{4}
  2. \displaystyle \frac{72}{108} = \frac{72/2}{108/2} = \frac{36}{54} = \frac{36/6}{54/6} = \frac{6}{9} = \frac{6/3}{9/3} = \frac{2}{3}

Ein Bruch sollte immer so weit wie möglich gekürzt werden. Dies kann bei großen Zahlen schwierig werden. Deshalb sollte man die Brüche so kurz wie möglich in den Rechnungen schreiben.


Addition und Subtraktion von Brüchen

Um Brüche addieren und subtrahieren zu können, müssen alle Brüche denselben Nenner haben. Wenn das nicht der Fall ist, muss man zuerst die Brüche mit einer angemessenen Zahl erweitern, sodass sie denselben Nenner bekommen.

Beispiel 2

  1. \displaystyle \frac{3}{5}+\frac{2}{3} = \frac{3\cdot 3}{5\cdot 3} + \frac{2\cdot 5}{3\cdot 5} = \frac{9}{15} + \frac{10}{15} = \frac{9+10}{15} = \frac{19}{15}
  2. \displaystyle \frac{5}{6}-\frac{2}{9} = \frac{5\cdot 3}{6\cdot 3} - \frac{2\cdot 2}{9\cdot 2} = \frac{15}{18} - \frac{4}{18} = \frac{15-4}{18} = \frac{11}{18}

Das wichtigste hier ist, einen gemeinsamen Nenner zu finden. Ideal ist aber, den kleinsten gemeinsamen Nenner zu finden. Einen gemeinsamen Nenner findet man einfach, indem man alle Brüche mit den Nennern der anderen Brüche erweitert. Dies ist aber nicht immer notwendig.


Beispiel 3

  1. \displaystyle \frac{7}{15}-\frac{1}{12} = \frac{7\cdot 12}{15\cdot 12} - \frac{1\cdot 15}{12\cdot 15}\vphantom{\Biggl(}
    \displaystyle \insteadof{\displaystyle\frac{7}{15}-\frac{1}{12}}{}{} = \frac{84}{180}-\frac{15}{180} = \frac{69}{180} = \frac{69/3}{180/3} = \frac{23}{60}
  2. \displaystyle \frac{7}{15}-\frac{1}{12} = \frac{7\cdot 4}{15\cdot 4}- \frac{1\cdot 5}{12\cdot 5} = \frac{28}{60}-\frac{5}{60} = \frac{23}{60}
  3. \displaystyle \frac{1}{8}+\frac{3}{4}-\frac{1}{6} = \frac{1\cdot 4\cdot 6}{8\cdot 4\cdot 6} + \frac{3\cdot 8\cdot 6}{4\cdot 8\cdot 6} - \frac{1\cdot 8\cdot 4}{6\cdot 8\cdot 4}\vphantom{\Biggl(}
    \displaystyle \insteadof{\frac{1}{8}+\frac{3}{4}-\frac{1}{6}}{}{} = \frac{24}{192} + \frac{144}{192} - \frac{32}{192} = \frac{136}{192} = \frac{136/8}{192/8} = \frac{17}{24}
  4. \displaystyle \frac{1}{8}+\frac{3}{4}-\frac{1}{6} = \frac{1\cdot 3}{8\cdot 3} + \frac{3\cdot 6}{4\cdot 6} - \frac{1\cdot 4}{6\cdot 4} = \frac{3}{24} + \frac{18}{24} - \frac{4}{24} = \frac{17}{24}

Man sollte die Bruchrechnung so gut beherrschen, dass man direkt den kleinsten gemeinsamen Nenner von nicht all zu großen Brüchen findet. Eine allgemeine Methode um den kleinsten gemeinsamen Nenner zu finden, besteht darin, dass man die Nenner in ihre Primfaktoren zerlegt.

Beispiel 4

  1. Vereinfache \displaystyle \ \frac{1}{60} + \frac{1}{42}.

    Wir zerlegen die Nenner zuerst in ihre Primfaktoren. Anstatt beide Brüche mit den ganzen Nenner des anderen Bruches zu erweitern, erweitern wir die Brüche nur mit den Primfaktoren, die nicht in beiden Nennern vorkommen. Dies ist der kleinste gemeinsame Nenner.
    \displaystyle \left.\eqalign{60 &= 2\cdot 2\cdot 3\cdot 5\cr 42 &= 2\cdot 3\cdot 7}\right\} \quad\Rightarrow\quad \text{LCD} = 2\cdot 2\cdot 3\cdot 5\cdot 7 = 420\,\mbox{.}

    Also haben wir

    \displaystyle \frac{1}{60}+\frac{1}{42} = \frac{1\cdot 7}{60\cdot 7} + \frac{1\cdot 2\cdot 5}{42\cdot 2\cdot 5} = \frac{7}{420} + \frac{10}{420} =\frac{17}{420}\,\mbox{.}
  2. Vereinfache \displaystyle \ \frac{2}{15}+\frac{1}{6}-\frac{5}{18}.

    Wir multiplizieren alle Primfaktoren des Nenners, die nicht in allen Nennern vorkommen, und erhalten dadurch den kleinsten gemeinsamen Nenner.
    \displaystyle \left. \eqalign{15 &= 3\cdot 5\cr 6&=2\cdot 3\cr 18 &= 2\cdot 3\cdot 3} \right\} \quad\Rightarrow\quad \text{LCD} = 2\cdot 3\cdot 3\cdot5 = 90\,\mbox{.}

    Also haben wir

    \displaystyle \frac{2}{15}+\frac{1}{6}-\frac{5}{18} = \frac{2\cdot 2\cdot 3}{15\cdot 2\cdot 3} + \frac{1\cdot 3\cdot 5}{6\cdot 3\cdot 5} - \frac{5\cdot 5}{18\cdot 5} = \frac{12}{90} + \frac{15}{90} - \frac{25}{90} = \frac{2}{90} = \frac{1}{45}\,\mbox{.}


Multiplikation

Wenn man einen Bruch mit einer ganzen Zahl multipliziert, wird nur der Zähler mit dieser Zahl multipliziert, während der Nenner unverändert bleibt. Es ist offensichtlich, dass zum Beispiel \displaystyle \tfrac{1}{3} multipliziert mit 2 \displaystyle \tfrac{2}{3} ergibt, also:

\displaystyle \frac{1}{3}\cdot 2 = \frac{1\cdot 2}{3} = \frac{2}{3}\,\mbox{.}

Wenn man Brüche miteinander multipliziert, multipliziert man die Zähler und die Nenner einzeln.

Beispiel 5

  1. \displaystyle 8\cdot\frac{3}{7} = \frac{8\cdot 3}{7} = \frac{24}{7}
  2. \displaystyle \frac{2}{3}\cdot \frac{1}{5} = \frac{2\cdot 1}{3\cdot 5} = \frac{2}{15}

Bevor man Brüche multipliziert, sollte man kontrollieren, ob man den Bruch kürzen kann. Dies kontrolliert man, indem man die Brüche als einen gemeinsamen Bruch schreibt.

Beispiel 6 Vergleiche die beiden Rechnungen:

  1. \displaystyle \frac{3}{5}\cdot\frac{2}{3} = \frac{3\cdot 2}{5\cdot 3} = \frac{6}{15} = \frac{6/3}{15/3} = \frac{2}{5}
  2. \displaystyle \frac{3}{5}\cdot\frac{2}{3} = \frac{\not{3}\cdot 2}{5\cdot \not{3}} = \frac{2}{5}

In 6b hat man den Bruch mit einen Schritt vorher 3 gekürzt als in 6a, aber beide Rechnungen ergeben dasselbe.

Beispiel 7

  1. \displaystyle \frac{7}{10}\cdot \frac{2}{7} = \frac{\not{7}}{10}\cdot \frac{2}{\not{7}} = \frac{1}{10}\cdot \frac{2}{1} = \frac{1}{\not{2} \cdot 5}\cdot \frac{\not{2}}{1} = \frac{1}{5}\cdot \frac{1}{1} =\frac{1}{5}
  2. \displaystyle \frac{14}{15}\cdot \frac{20}{21} = \frac{2 \cdot 7}{3 \cdot 5}\cdot \frac{4 \cdot 5}{3 \cdot 7} = \frac{2 \cdot \not{7}}{3 \cdot 5}\cdot \frac{4 \cdot 5}{3 \cdot \not{7}} = \frac{2}{3 \cdot \not{5}}\cdot \frac{4 \cdot \not{5}}{3} = \frac{2}{3}\cdot\frac{4}{3} = \frac{2\cdot 4}{3\cdot 3} = \frac{8}{9}


Division

Wenn man \displaystyle \tfrac{1}{4} durch 2 teilt, bekommt man \displaystyle \tfrac{1}{8}. Wenn man \displaystyle \tfrac{1}{2} durch 5 teilt, bekommt man \displaystyle \tfrac{1}{10}. Wir haben also:

\displaystyle \frac{\displaystyle \frac{1}{4}}{2} = \frac{1}{4\cdot 2} = \frac{1}{8} \qquad \mbox{ and } \qquad \frac{\displaystyle \frac{1}{2}}{5} = \frac{1}{2\cdot 5} = \frac{1}{10}\,\mbox{.}

Wenn ein Bruch durch eine ganze Zahl dividiert wird, wird also der Nenner mit dieser Zahl multipliziert.

Beispiel 8

  1. \displaystyle \frac{3}{5}\Big/4 = \frac{3}{5\cdot 4} = \frac{3}{20}
  2. \displaystyle \frac{6}{7}\Big/3 = \frac{6}{7\cdot 3} = \frac{2\cdot\not{3}}{7\cdot \not{3}} = \frac{2}{7}

Wenn man eine ganze Zahl durch einen Bruch dividiert, wird die Zahl mit dem Kehrbruch des Bruches multipliziert. Zum Beispiel ist die Division durch \displaystyle \frac{1}{2} dasselbe wie eine Multiplikation mit \displaystyle \frac{2}{1}, also 2.

Beispiel 9

  1. \displaystyle \frac{3}{\displaystyle \frac{1}{2}} = 3\cdot \frac{2}{1} = \frac{3\cdot 2}{1} = 6
  2. \displaystyle \frac{5}{\displaystyle \frac{3}{7}} = 5\cdot\frac{7}{3} = \frac{5\cdot 7}{3} = \frac{35}{3}
  3. \displaystyle \frac{\displaystyle \frac{2}{3}}{\displaystyle \frac{5}{8}} = \frac{2}{3}\cdot \frac{8}{5} = \frac{2\cdot 8}{3\cdot 5} = \frac{16}{15}
  4. \displaystyle \frac{\displaystyle \frac{3}{4}}{\displaystyle \frac{9}{10}} = \frac{3}{4}\cdot \frac{10}{9} = \frac{\not{3}}{2\cdot\not{2}} \cdot\frac{\not{2} \cdot 5}{\not{3} \cdot 3} = \frac{5}{2\cdot 3} = \frac{5}{6}

Wie kommt es, dass eine Division mit Brüchen eine Multiplikation wird? Die Erklärung ist, dass ein Bruch multipliziert mit seinem Kehrbruch, immer 1 ergibt. Zum Beispiel:

\displaystyle \frac{2}{3}\cdot\frac{3}{2} = \frac{\not{2}}{\not{3}}\cdot\frac{\not{3}}{\not{2}} = 1 \qquad \mbox{ und } \qquad \frac{9}{17}\cdot\frac{17}{9} = \frac{\not{9}}{\not{17}}\cdot\frac{\not{17}}{\not{9}} = 1\mbox{.}

Bei einer Division von Brüchen erweitert man den ganzen Bruch mit dem Kehrbruch des Nennerbruches. Im Nenner bekommen wir daher nur einen 1:er.

Beispiel 10

\displaystyle \frac{\displaystyle \frac{2}{3}}{\displaystyle \frac{5}{7}} = \frac{\displaystyle \frac{2}{3}\cdot\displaystyle \frac{7}{5}}{\displaystyle \frac{5}{7}\cdot\displaystyle \frac{7}{5}} = \frac{\displaystyle \frac{2}{3}\cdot\displaystyle \frac{7}{5}}{1} = \frac{2}{3}\cdot\frac{7}{5}


Brüche als Teil eines Ganzen

Rationale Zahlen können als Dezimalzahlen oder auch als Brüche dargestellt werden. Im Alltag verwendet man oft die rationalen Zahlen, um das Verhältnis von verschiedenen Mengen zu beschreiben. Eine Berechnung von einen Verhältnis kann entweder zu einer Multiplikation oder zu einer Division führen.

Beispiel 11

  1. Florian investiert 20 € und Julia 50 €.

    Florians Anteil ist  \displaystyle \frac{20}{50 + 20} = \frac{20}{70} = \frac{2}{7}  und also sollte er  \displaystyle \frac{2}{7} des Gewinns bekommen.


  2. Was ist der Anteil von 45 € aus 100 €?

    Antwort: 45 € ist  \displaystyle \frac{45}{100} = \frac{9}{20} von 100 €. .


  3. Was ist der Anteil von \displaystyle \frac{1}{3}Liter aus \displaystyle \frac{1}{2} Liter?

    Antwort: \displaystyle \frac{1}{3} Liter sind \displaystyle \frac{\displaystyle \frac{1}{3}}{\displaystyle \frac{1}{2}} = \frac{1}{3}\cdot\frac{2}{1} = \frac{2}{3}   von  \displaystyle \frac{1}{2} Liter.


  4. Wie viel ist  \displaystyle \frac{5}{8}   von 1000?

    Antwort: \displaystyle \frac{5}{8}\cdot 1000 = \frac{5000}{8} = 625


  5. Wie viel ist  \displaystyle \frac{2}{3}  von  \displaystyle \frac{6}{7} ?

    Antwort: \displaystyle \frac{2}{3}\cdot\frac{6}{7} = \frac{2}{\not{3}} \cdot \frac{2 \cdot \not{3}}{7} = \frac{2 \cdot 2}{7} = \frac{4}{7}


Gemischte Ausdrücke

Wenn Brüche in größeren Ausdrücken vorkommen, ist es wichtig sich an die Operatorrangfolge zu erinnern. Wichtig ist auch, dass es um Zähler und Nenner in einem Bruch "unsichtbare Klammern" gibt. Also muss man den Zähler und Nenner zuerst berechnen, bevor man den Bruch kürzt.

Beispiel 12

  1. \displaystyle \frac{1}{\displaystyle \frac{2}{3}+\frac{3}{4}} = \frac{1}{\displaystyle \frac{2\cdot 4}{3\cdot 4} + \frac{3\cdot 3}{4\cdot 3}} = \frac{1}{\displaystyle \frac{8}{12} + \frac{9}{12}} = \frac{1}{\displaystyle \frac{17}{12}} = 1\cdot\frac{12}{17} = \frac{12}{17}


  2. \displaystyle \frac{\displaystyle \frac{4}{3} - \frac{1}{6}}{\displaystyle \frac{4}{3}+\frac{1}{6}} = \frac{\displaystyle \frac{4 \cdot 2}{3 \cdot 2} - \frac{1}{6}}{\displaystyle \frac{4 \cdot 2}{3 \cdot 2} + \frac{1}{6}} = \frac{\displaystyle \frac{8}{6} - \frac{1}{6}}{\displaystyle \frac{8}{6} + \frac{1}{6}} = \frac{\displaystyle \frac{7}{6}}{\displaystyle \frac{9}{6}} = \frac{7}{\not{6}}\cdot\frac{\not{6}}{9} = \frac{7}{9}


  3. \displaystyle \frac{3-\displaystyle \frac{3}{5}}{\displaystyle \frac{2}{3}-2} = \frac{\displaystyle \frac{3 \cdot 5}{5}- \frac{3}{5}}{\displaystyle \frac{2}{3} - \frac{2 \cdot 3}{3}} = \frac{\displaystyle \frac{15}{5} - \frac{3}{5}}{\displaystyle \frac{2}{3} - \frac{6}{3}} = \frac{\displaystyle \frac{12}{5}}{-\displaystyle \frac{4}{3}} = \frac{12}{5}\cdot\left(-\frac{3}{4}\right) = -\frac{3\cdot \not{4} }{5} \cdot \frac{3}{\not{4}} = -\frac{3\cdot 3}{5} = -\frac{9}{5}


  4. \displaystyle \frac{\displaystyle\frac{1}{\frac{1}{2}+\frac{1}{3}}-\frac{3}{5} \cdot\frac{1}{3}}{\displaystyle\frac{2}{3}\big/\frac{1}{5} -\frac{\frac{1}{4}-\frac{1}{3}}{2}} = \frac{\displaystyle\frac{1}{\frac{3}{6}+\frac{2}{6}} -\frac{3\cdot1}{5\cdot3}}{\displaystyle\frac{2}{3}\cdot\frac{5}{1} -\frac{\frac{3}{12}-\frac{4}{12}}{2}} = \frac{\displaystyle \frac{1}{\displaystyle \frac{5}{6}} - \frac{1}{5}}{\displaystyle \frac{10}{3} - \frac{-\displaystyle \frac{1}{12}}{2}} \displaystyle \qquad\quad{}= \frac{\displaystyle \frac{6}{5} - \frac{1}{5}}{\displaystyle \frac{10}{3} + \frac{1}{24}} = \frac{1}{\displaystyle \frac{80}{24}+\frac{1}{24}} = \frac{1}{\displaystyle \frac{81}{24}} = \frac{24}{81} = \frac{8}{27}

Übungen


Tipps fürs Lernen

Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die links zu den Prüfungen in Deiner "Student Lounge".


Bedenke folgendes:

Versuche Deine Berechnungen so einfach wie möglich zu halten. Was am einfachsten ist, ist verschieden von Fall zu Fall.

Es ist wichtig, die Rechnungen mit Brüchen gut zu beherrschen. Du solltest Bruchrechnungen sowie Divisionen, Multiplikation und Brüche mit gemeinsamen Nennern schreiben und ohne Probleme ausführen können. Bruchrechnungen kommen häufig in rationalen Funktionen vor, aber auch in Grenzwerten und Differentialrechnungen, und sind daher sehr elementar in der Mathematik.


Literaturhinweise

For those of you who want to deepen your studies or need more detailed explanations consider the following references

more about the fractions and calculating with fractions in the English Wikipedia


Nützliche Websites

Experimenting interactively with fractions

Play the prime number canon