Lösung 1.3:6f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (hat „Solution 1.3:6f“ nach „Lösung 1.3:6f“ verschoben: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | Wie zerlegen die Exponente 40 und 56 in ihre Primfaktoren | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 6: | Zeile 6: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Hier sehen wir dass die Exponenten den gemeinsamen Faktor <math>2^{3} = 8</math> haben. Mit den Rechenregeln für Potenzen schreiben wir den Ausdruck als: | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 13: | Zeile 13: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Und sehen dass <math>3^{40} = 243^{8} > 2^{56} = 128^{8}</math>. |
Version vom 13:24, 29. Okt. 2008
Wie zerlegen die Exponente 40 und 56 in ihre Primfaktoren
\displaystyle \begin{align}
40 &= 4\cdot 10 = 2\cdot 2\cdot 2\cdot 5 = 2^{3}\cdot 5 \\[3pt] 56 &= 7\cdot 8 = 7\cdot 2\cdot 4 = 7\cdot 2\cdot 2\cdot 2 = 2^{3}\cdot 7 \end{align} |
Hier sehen wir dass die Exponenten den gemeinsamen Faktor \displaystyle 2^{3} = 8 haben. Mit den Rechenregeln für Potenzen schreiben wir den Ausdruck als:
\displaystyle \begin{align}
3^{40} &= 3^{5\cdot 8} = \bigl(3^{5}\bigr)^{8} = (3\cdot 3\cdot 3\cdot 3\cdot 3)^{8} = 243^{8}\,,\\[3pt] 2^{56} &= 2^{7\cdot 8} = \bigl(2^{7}\bigr)^{8} = (2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)^{8} = 128^{8}\,\textrm{.} \end{align} |
Und sehen dass \displaystyle 3^{40} = 243^{8} > 2^{56} = 128^{8}.