1.2 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (hat „1.2 Exercises“ nach „1.2 Übungen“ verschoben: Robot: moved page) |
|||
Zeile 10: | Zeile 10: | ||
===Übung 1.2:1=== | ===Übung 1.2:1=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | Schreibe folgende Ausdrücke als ein einziger Bruch. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 29: | Zeile 29: | ||
===Übung 1.2:2=== | ===Übung 1.2:2=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | Bestimme den kleinsten gemeinsamen Nenner von: | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 46: | Zeile 46: | ||
===Übung 1.2:3=== | ===Übung 1.2:3=== | ||
<div class="ovning"> | <div class="ovning"> | ||
+ | Berechne folgende Ausdrücke, mit Hilfe von den kleinsten gemeinsamen Nenner. | ||
Calculate the following by using the lowest common denominator. | Calculate the following by using the lowest common denominator. | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
Zeile 58: | Zeile 59: | ||
===Übung 1.2:4=== | ===Übung 1.2:4=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | Schreibe folgende Ausdrücke als ein einziger Bruch, so weit wie möglich gekürzt. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 72: | Zeile 73: | ||
===Übung 1.2:5=== | ===Übung 1.2:5=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | Schreibe folgende Ausdrücke als ein einziger Bruch, so weit wie möglich gekürzt. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 86: | Zeile 87: | ||
===Übung 1.2:6=== | ===Übung 1.2:6=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | Vereinfache: | |
<math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math> | <math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math> | ||
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:6|Lösung |Lösung 1.2:6}} | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:6|Lösung |Lösung 1.2:6}} |
Version vom 11:18, 26. Okt. 2008
Theorie | Übungen |
Übung 1.2:1
Schreibe folgende Ausdrücke als ein einziger Bruch.
a) | \displaystyle \displaystyle \frac{7}{4}+\frac{11}{7} | b) | \displaystyle \displaystyle \frac{2}{7}-\frac{1}{5} | c) | \displaystyle \displaystyle \frac{1}{6}-\frac{2}{5} |
d) | \displaystyle \displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5} | e) | \displaystyle \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Übung 1.2:2
Bestimme den kleinsten gemeinsamen Nenner von:
a) | \displaystyle \displaystyle \frac{1}{6}+\frac{1}{10} | b) | \displaystyle \displaystyle \frac{1}{4}-\frac{1}{8} |
c) | \displaystyle \displaystyle \frac{1}{12}-\frac{1}{14} | d) | \displaystyle \displaystyle \frac{2}{45}+\frac{1}{75} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 1.2:3
Berechne folgende Ausdrücke, mit Hilfe von den kleinsten gemeinsamen Nenner. Calculate the following by using the lowest common denominator.
a) | \displaystyle \displaystyle\frac{3}{20}+\frac{7}{50}-\frac{1}{10} | b) | \displaystyle \displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16} |
Übung 1.2:4
Schreibe folgende Ausdrücke als ein einziger Bruch, so weit wie möglich gekürzt.
a) | \displaystyle \displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10}} | b) | \displaystyle \displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}} | c) | \displaystyle \displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}} |
Übung 1.2:5
Schreibe folgende Ausdrücke als ein einziger Bruch, so weit wie möglich gekürzt.
a) | \displaystyle \displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}} | b) | \displaystyle \displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2}} | c) | \displaystyle \displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}} |
Übung 1.2:6
Vereinfache: \displaystyle \ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}
Antwort
Lösung