Lösung 4.3:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (hat „Solution 4.3:4b“ nach „Lösung 4.3:4b“ verschoben: Robot: moved page)

Version vom 15:04, 22. Okt. 2008

If we once again use the Pythagorean identity we get

\displaystyle \cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \sin v = \pm\sqrt{1-\cos^2 v}\,\textrm{.}

Because the angle v lies between \displaystyle 0 and \displaystyle \pi, \displaystyle \sin v is positive (an angle in the first and second quadrants has a positive y-coordinate) and therefore

\displaystyle \sin v = +\sqrt{1-\cos^2 v} = \sqrt{1-b^2}\,\textrm{.}