Lösung 4.2:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K (hat „Solution 4.2:4c“ nach „Lösung 4.2:4c“ verschoben: Robot: moved page) |
Version vom 14:56, 22. Okt. 2008
In exercise 4.2:3e, we studied the angle \displaystyle 3\pi/4 and found that
\displaystyle \cos\frac{3\pi }{4} = -\frac{1}{\sqrt{2}}\qquad\text{and}\qquad\sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}\,\textrm{.} |
Because \displaystyle \tan x is defined as \displaystyle \frac{\sin x}{\cos x}, we get immediately that
\displaystyle \tan\frac{3\pi}{4} = \frac{\sin\dfrac{3\pi}{4}}{\cos \dfrac{3\pi}{4}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.} |