Lösung 4.2:3d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (hat „Solution 4.2:3d“ nach „Lösung 4.2:3d“ verschoben: Robot: moved page)

Version vom 14:55, 22. Okt. 2008

In order to get an angle between \displaystyle 0 and \displaystyle \text{2}\pi, we subtract \displaystyle 2\pi from \displaystyle {7\pi }/{2}\,, which also leaves the cosine value unchanged

\displaystyle \cos\frac{7\pi}{2} = \cos\Bigl(\frac{7\pi}{2}-2\pi\Bigr) = \cos\frac{3\pi}{2}\,\textrm{.}

When we draw a line which makes an angle \displaystyle 3\pi/2 with the positive x-axis, we get the negative y-axis and we see that this line cuts the unit circle at the point (0,-1). The x-coordinate of the intersection point is thus \displaystyle 0 and hence \displaystyle \cos (7\pi/2) = \cos (3\pi/2) = 0\,.