1.2 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Answer +Antwort)) |
K (Robot: Automated text replacement (-Solution +Lösung)) |
||
Zeile 24: | Zeile 24: | ||
||<math> \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math> | ||<math> \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:1| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:1|Lösung a|Lösung 1.2:1a|Lösung b|Lösung 1.2:1b|Lösung c|Lösung 1.2:1c|Lösung d|Lösung 1.2:1d|Lösung e|Lösung 1.2:1e}} |
Zeile 41: | Zeile 41: | ||
|| <math>\displaystyle \frac{2}{45}+\frac{1}{75}</math> | || <math>\displaystyle \frac{2}{45}+\frac{1}{75}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:2| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:2|Lösung a|Lösung 1.2:2a|Lösung b|Lösung 1.2:2b|Lösung c|Lösung 1.2:2c|Lösung d|Lösung 1.2:2d}} |
Zeile 53: | Zeile 53: | ||
|width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math> | |width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:3| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:3|Lösung a|Lösung 1.2:3a|Lösung b|Lösung 1.2:3b}} |
Zeile 67: | Zeile 67: | ||
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math> | |width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:4| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:4|Lösung a|Lösung 1.2:4a|Lösung b|Lösung 1.2:4b|Lösung c|Lösung 1.2:4c}} |
Zeile 81: | Zeile 81: | ||
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math> | |width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:5| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:5|Lösung a|Lösung 1.2:5a|Lösung b|Lösung 1.2:5b|Lösung c|Lösung 1.2:5c}} |
Zeile 88: | Zeile 88: | ||
Simplify | Simplify | ||
<math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math> | <math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math> | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:6| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:6|Lösung |Lösung 1.2:6}} |
Version vom 09:28, 22. Okt. 2008
Übung 1.2:1
Write as one fraction
a) | \displaystyle \displaystyle \frac{7}{4}+\frac{11}{7} | b) | \displaystyle \displaystyle \frac{2}{7}-\frac{1}{5} | c) | \displaystyle \displaystyle \frac{1}{6}-\frac{2}{5} |
d) | \displaystyle \displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5} | e) | \displaystyle \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Übung 1.2:2
Determine the lowest common denominator of
a) | \displaystyle \displaystyle \frac{1}{6}+\frac{1}{10} | b) | \displaystyle \displaystyle \frac{1}{4}-\frac{1}{8} |
c) | \displaystyle \displaystyle \frac{1}{12}-\frac{1}{14} | d) | \displaystyle \displaystyle \frac{2}{45}+\frac{1}{75} |
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 1.2:3
Calculate the following by using the lowest common denominator.
a) | \displaystyle \displaystyle\frac{3}{20}+\frac{7}{50}-\frac{1}{10} | b) | \displaystyle \displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16} |
Übung 1.2:4
Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.
a) | \displaystyle \displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10}} | b) | \displaystyle \displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}} | c) | \displaystyle \displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}} |
Übung 1.2:5
Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.
a) | \displaystyle \displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}} | b) | \displaystyle \displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2}} | c) | \displaystyle \displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}} |
Übung 1.2:6
Simplify \displaystyle \ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}
Antwort
Lösung