Processing Math: 82%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.1 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Exercises +Übungen))
K (Robot: Automated text replacement (-Exercise +Übung))
Zeile 8: Zeile 8:
-
===Exercise 2.1:1===
+
===Übung 2.1:1===
<div class="ovning">
<div class="ovning">
Expand
Expand
Zeile 34: Zeile 34:
-
===Exercise 2.1:2===
+
===Übung 2.1:2===
<div class="ovning">
<div class="ovning">
Expand
Expand
Zeile 53: Zeile 53:
</div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d|Solution e|Solution 2.1:2e}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d|Solution e|Solution 2.1:2e}}
-
===Exercise 2.1:3===
+
===Übung 2.1:3===
<div class="ovning">
<div class="ovning">
Factorise and simplify as much as possible
Factorise and simplify as much as possible
Zeile 73: Zeile 73:
</div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d|Solution e|Solution 2.1:3e|Solution f|Solution 2.1:3f}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d|Solution e|Solution 2.1:3e|Solution f|Solution 2.1:3f}}
-
===Exercise 2.1:4===
+
===Übung 2.1:4===
<div class="ovning">
<div class="ovning">
Determine the coefficients in front of <math>\,x\,</math> and <math>\,x^2\</math> when the following expressions are expanded out.
Determine the coefficients in front of <math>\,x\,</math> and <math>\,x^2\</math> when the following expressions are expanded out.
Zeile 89: Zeile 89:
</div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c}}
-
===Exercise 2.1:5===
+
===Übung 2.1:5===
<div class="ovning">
<div class="ovning">
Simplify as much as possible
Simplify as much as possible
Zeile 105: Zeile 105:
</div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b|Solution c|Solution 2.1:5c|Solution d|Solution 2.1:5d}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b|Solution c|Solution 2.1:5c|Solution d|Solution 2.1:5d}}
-
===Exercise 2.1:6===
+
===Übung 2.1:6===
<div class="ovning">
<div class="ovning">
Simplify as much as possible
Simplify as much as possible
Zeile 121: Zeile 121:
</div>{{#NAVCONTENT:Answer|Answer 2.1:6|Solution a|Solution 2.1:6a|Solution b|Solution 2.1:6b|Solution c|Solution 2.1:6c|Solution d|Solution 2.1:6d}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:6|Solution a|Solution 2.1:6a|Solution b|Solution 2.1:6b|Solution c|Solution 2.1:6c|Solution d|Solution 2.1:6d}}
-
===Exercise 2.1:7===
+
===Übung 2.1:7===
<div class="ovning">
<div class="ovning">
Simplify the following fractions by writing them as an expression having a common fraction sign
Simplify the following fractions by writing them as an expression having a common fraction sign
Zeile 134: Zeile 134:
</div>{{#NAVCONTENT:Answer|Answer 2.1:7|Solution a|Solution 2.1:7a|Solution b|Solution 2.1:7b|Solution c|Solution 2.1:7c}}
</div>{{#NAVCONTENT:Answer|Answer 2.1:7|Solution a|Solution 2.1:7a|Solution b|Solution 2.1:7b|Solution c|Solution 2.1:7c}}
-
===Exercise 2.1:8===
+
===Übung 2.1:8===
<div class="ovning">
<div class="ovning">
Simplify the following fractions by writing them as an expression having a common fraction sign
Simplify the following fractions by writing them as an expression having a common fraction sign

Version vom 09:14, 22. Okt. 2008

 

Vorlage:Not selected tab Vorlage:Selected tab

 


Übung 2.1:1

Expand

a) 3x(x1) b) (1+xx2)xy c) x2(4y2)
d) x3y2y11xy+1  e) (x7)2 f) (5+4y)2
g) (y23x3)2 h) (5x3+3x5)2


Übung 2.1:2

Expand

a) (x4)(x5)3x(2x3) b) (15x)(1+15x)3(25x)(2+5x)
c) (3x+4)2(3x2)(3x8) d) (3x2+2)(3x22)(9x4+4)
e) (a+b)2+(ab)2

Übung 2.1:3

Factorise and simplify as much as possible

a) x236 b) 5x220 c) x2+6x+9
d) x210x+25 e) 18x2x3 f) 16x2+8x+1

Übung 2.1:4

Determine the coefficients in front of x and x2  when the following expressions are expanded out.

a) (x+2)(3x2x+5)
b) (1+x+x2+x3)(2x+x2+x4)
c) (xx3+x5)(1+3x+5x2)(27x2x4)

Übung 2.1:5

Simplify as much as possible

a) 1xx2x1 b) 1y22y2y24
c) (x+1)(x+2)(3x212)(x21) d) (y2+4)(y24)(y2+4y+4)(2y4)

Übung 2.1:6

Simplify as much as possible

a) xy+x2yx  y2xy1  b) xx2+xx+32
c) 2a+ba2ab2ab d) \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}

Übung 2.1:7

Simplify the following fractions by writing them as an expression having a common fraction sign

a) \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} b) \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} c) \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}

Übung 2.1:8

Simplify the following fractions by writing them as an expression having a common fraction sign

a) \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } b) \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} c) \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}