2.1 Übungen
Aus Online Mathematik Brückenkurs 1
K (Robot: Automated text replacement (-Exercises +Übungen)) |
K (Robot: Automated text replacement (-Exercise +Übung)) |
||
Zeile 8: | Zeile 8: | ||
- | === | + | ===Übung 2.1:1=== |
<div class="ovning"> | <div class="ovning"> | ||
Expand | Expand | ||
Zeile 34: | Zeile 34: | ||
- | === | + | ===Übung 2.1:2=== |
<div class="ovning"> | <div class="ovning"> | ||
Expand | Expand | ||
Zeile 53: | Zeile 53: | ||
</div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d|Solution e|Solution 2.1:2e}} | </div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d|Solution e|Solution 2.1:2e}} | ||
- | === | + | ===Übung 2.1:3=== |
<div class="ovning"> | <div class="ovning"> | ||
Factorise and simplify as much as possible | Factorise and simplify as much as possible | ||
Zeile 73: | Zeile 73: | ||
</div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d|Solution e|Solution 2.1:3e|Solution f|Solution 2.1:3f}} | </div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d|Solution e|Solution 2.1:3e|Solution f|Solution 2.1:3f}} | ||
- | === | + | ===Übung 2.1:4=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine the coefficients in front of <math>\,x\,</math> and <math>\,x^2\</math> when the following expressions are expanded out. | Determine the coefficients in front of <math>\,x\,</math> and <math>\,x^2\</math> when the following expressions are expanded out. | ||
Zeile 89: | Zeile 89: | ||
</div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c}} | </div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c}} | ||
- | === | + | ===Übung 2.1:5=== |
<div class="ovning"> | <div class="ovning"> | ||
Simplify as much as possible | Simplify as much as possible | ||
Zeile 105: | Zeile 105: | ||
</div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b|Solution c|Solution 2.1:5c|Solution d|Solution 2.1:5d}} | </div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b|Solution c|Solution 2.1:5c|Solution d|Solution 2.1:5d}} | ||
- | === | + | ===Übung 2.1:6=== |
<div class="ovning"> | <div class="ovning"> | ||
Simplify as much as possible | Simplify as much as possible | ||
Zeile 121: | Zeile 121: | ||
</div>{{#NAVCONTENT:Answer|Answer 2.1:6|Solution a|Solution 2.1:6a|Solution b|Solution 2.1:6b|Solution c|Solution 2.1:6c|Solution d|Solution 2.1:6d}} | </div>{{#NAVCONTENT:Answer|Answer 2.1:6|Solution a|Solution 2.1:6a|Solution b|Solution 2.1:6b|Solution c|Solution 2.1:6c|Solution d|Solution 2.1:6d}} | ||
- | === | + | ===Übung 2.1:7=== |
<div class="ovning"> | <div class="ovning"> | ||
Simplify the following fractions by writing them as an expression having a common fraction sign | Simplify the following fractions by writing them as an expression having a common fraction sign | ||
Zeile 134: | Zeile 134: | ||
</div>{{#NAVCONTENT:Answer|Answer 2.1:7|Solution a|Solution 2.1:7a|Solution b|Solution 2.1:7b|Solution c|Solution 2.1:7c}} | </div>{{#NAVCONTENT:Answer|Answer 2.1:7|Solution a|Solution 2.1:7a|Solution b|Solution 2.1:7b|Solution c|Solution 2.1:7c}} | ||
- | === | + | ===Übung 2.1:8=== |
<div class="ovning"> | <div class="ovning"> | ||
Simplify the following fractions by writing them as an expression having a common fraction sign | Simplify the following fractions by writing them as an expression having a common fraction sign |
Version vom 09:14, 22. Okt. 2008
Übung 2.1:1
Expand
a) | | b) | | c) | |
d) | ![]() ![]() | e) | f) | ||
g) | h) |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f | Solution g | Solution h
Übung 2.1:2
Expand
a) | | b) | |
c) | | d) | |
e) |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e
Übung 2.1:3
Factorise and simplify as much as possible
a) | | b) | | c) | |
d) | | e) | f) |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Übung 2.1:4
Determine the coefficients in front of
a) | |
b) | |
c) | |
Answer | Solution a | Solution b | Solution c
Übung 2.1:5
Simplify as much as possible
a) | | b) | |
c) | | d) | |
Answer | Solution a | Solution b | Solution c | Solution d
Übung 2.1:6
Simplify as much as possible
a) | ![]() ![]() ![]() ![]() | b) | |
c) | | d) | \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2} |
Answer | Solution a | Solution b | Solution c | Solution d
Übung 2.1:7
Simplify the following fractions by writing them as an expression having a common fraction sign
a) | \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} | b) | \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} | c) | \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2} |
Answer | Solution a | Solution b | Solution c
Übung 2.1:8
Simplify the following fractions by writing them as an expression having a common fraction sign
a) | \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } | b) | \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} | c) | \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}} |
Answer | Solution a | Solution b | Solution c