Lösung 4.4:8a
Aus Online Mathematik Brückenkurs 1
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we use the formula for double angles, <math>\sin 2x = 2\sin x\cos x</math>, and move all the terms over to the left-hand side, the equation becomes | If we use the formula for double angles, <math>\sin 2x = 2\sin x\cos x</math>, and move all the terms over to the left-hand side, the equation becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>2\sin x\cos x-\sqrt{2}\cos x=0\,\textrm{.}</math>}} |
Then, we see that we can take a factor <math>\cos x</math> out of both terms, | Then, we see that we can take a factor <math>\cos x</math> out of both terms, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\cos x\,(2\sin x-\sqrt{2}) = 0</math>}} |
and hence divide up the equation into two cases. The equation is satisfied either if <math>\cos x = 0</math> or if <math>2\sin x-\sqrt{2} = 0\,</math>. | and hence divide up the equation into two cases. The equation is satisfied either if <math>\cos x = 0</math> or if <math>2\sin x-\sqrt{2} = 0\,</math>. | ||
Zeile 14: | Zeile 14: | ||
This equation has the general solution | This equation has the general solution | ||
- | {{ | + | {{Abgesetzte Formel||<math>x = \frac{\pi}{2}+n\pi\qquad</math>(''n'' is an arbitrary integer).}} |
Zeile 22: | Zeile 22: | ||
<math>\sin x = 1/\!\sqrt{2}</math>, which has the general solution | <math>\sin x = 1/\!\sqrt{2}</math>, which has the general solution | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] | x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] | ||
x &= \frac{3\pi}{4}+2n\pi\,, | x &= \frac{3\pi}{4}+2n\pi\,, | ||
Zeile 32: | Zeile 32: | ||
The complete solution of the equation is | The complete solution of the equation is | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] | x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] | ||
x &= \frac{\pi}{2}+n\pi\,,\\[5pt] | x &= \frac{\pi}{2}+n\pi\,,\\[5pt] |
Version vom 09:01, 22. Okt. 2008
If we use the formula for double angles, \displaystyle \sin 2x = 2\sin x\cos x, and move all the terms over to the left-hand side, the equation becomes
\displaystyle 2\sin x\cos x-\sqrt{2}\cos x=0\,\textrm{.} |
Then, we see that we can take a factor \displaystyle \cos x out of both terms,
\displaystyle \cos x\,(2\sin x-\sqrt{2}) = 0 |
and hence divide up the equation into two cases. The equation is satisfied either if \displaystyle \cos x = 0 or if \displaystyle 2\sin x-\sqrt{2} = 0\,.
\displaystyle \cos x = 0:
This equation has the general solution
\displaystyle x = \frac{\pi}{2}+n\pi\qquad(n is an arbitrary integer). |
\displaystyle 2\sin x-\sqrt{2}=0:
If we collect \displaystyle \sin x on the left-hand side, we obtain the equation \displaystyle \sin x = 1/\!\sqrt{2}, which has the general solution
\displaystyle \left\{\begin{align}
x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] x &= \frac{3\pi}{4}+2n\pi\,, \end{align}\right. |
where n is an arbitrary integer.
The complete solution of the equation is
\displaystyle \left\{\begin{align}
x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] x &= \frac{\pi}{2}+n\pi\,,\\[5pt] x &= \frac{3\pi}{4}+2n\pi\,, \end{align}\right. |
where n is an arbitrary integer.